On the finite basis problem for the monoids of partial extensive injective transformations

被引:0
|
作者
Xun Hu
Yuzhu Chen
Yanfeng Luo
机构
[1] Lanzhou University,School of Mathematics and Statistics
[2] Chongqing Technology and Business University,School of Mathematics and Statistics
[3] Key Laboratory of Applied Mathematics and Complex Systems,undefined
来源
Semigroup Forum | 2015年 / 91卷
关键词
Partial extensive and injective transformation semigroups ; Identities; Finite basis problem; Nonfinitely based ; Hereditarily finitely based;
D O I
暂无
中图分类号
学科分类号
摘要
Let PEIn(POEIn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PEI_n (POEI_n)$$\end{document} be the monoid of all partial (order-preserving) extensive and injective transformations over a chain of order n. We give a sufficient condition under which a semigroup is nonfinitely based and apply this condition to show that the monoid PEI3(POEI3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PEI_3 (POEI_3)$$\end{document} is nonfinitely based. This together with the results of Edmunds and Goldberg gives a complete answer to the finite basis problem for the monoid PEIn(POEIn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PEI_n (POEI_n)$$\end{document}: the monoid PEIn(POEIn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PEI_n (POEI_n)$$\end{document} is nonfinitely based if and only if n⩾3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 3$$\end{document}. Furthermore, it is shown that the monoid PEIn(POEIn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PEI_n (POEI_n)$$\end{document} is hereditarily finitely based if and only if n⩽2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\leqslant 2$$\end{document}.
引用
收藏
页码:524 / 537
页数:13
相关论文
共 50 条
  • [31] Presentations for monoids of finite partial isometries
    Fernandes, Vitor H.
    Quinteiro, Teresa M.
    SEMIGROUP FORUM, 2016, 93 (01) : 97 - 110
  • [32] On monoids of monotone injective partial selfmaps of integers with cofinite domains and images
    Gutik, Oleg
    Repovs, Dusan
    GEORGIAN MATHEMATICAL JOURNAL, 2012, 19 (03) : 511 - 532
  • [33] Presentations for monoids of finite partial isometries
    Vítor H. Fernandes
    Teresa M. Quinteiro
    Semigroup Forum, 2016, 93 : 97 - 110
  • [34] The monoid of all orientation-preserving and extensive partial transformations on a finite chain
    Zhao, Ping
    Hu, Huabi
    SEMIGROUP FORUM, 2023, 106 (03) : 720 - 746
  • [35] The monoid of all orientation-preserving and extensive partial transformations on a finite chain
    Ping Zhao
    Huabi Hu
    Semigroup Forum, 2023, 106 : 720 - 746
  • [36] TOPOLOGICAL MONOIDS OF MONOTONE INJECTIVE PARTIAL SELFMAPS OF N WITH COFINITE DOMAIN AND IMAGE
    Gutik, Oleg
    Repovs, Dusan
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2011, 48 (03) : 342 - 353
  • [37] On monoids of monotone injective partial selfmaps of L-n x (lex) Z with co-finite domains and images
    Gutik, Oleg
    Pozdnyakova, Inna
    ALGEBRA & DISCRETE MATHEMATICS, 2014, 17 (02): : 256 - 279
  • [38] Partial automorphisms and injective partial endomorphisms of a finite undirected path
    I. Dimitrova
    V. H. Fernandes
    J. Koppitz
    T. M. Quinteiro
    Semigroup Forum, 2021, 103 : 87 - 105
  • [39] On the semigroup of all injective orientation-preserving and order-decreasing partial transformations on a finite chain
    Ayik, Hayrullah
    Ayik, Gonca
    Dagdeviren, Aysegul
    COMMUNICATIONS IN ALGEBRA, 2025,
  • [40] Congruences on monoids of transformations preserving the orientation on a finite chain
    Fernandes, Vitor H.
    Gomes, Gracinda M. S.
    Jesus, Manuel M.
    JOURNAL OF ALGEBRA, 2009, 321 (03) : 743 - 757