Parameter and State Estimation of Nonlinear Fractional-Order Model Using Luenberger Observer

被引:0
|
作者
Soumaya Marzougui
Saïda Bedoui
Asma Atitallah
Kamel Abderrahim
机构
[1] University of Gabes,Research Laboratory of Numerical Control of Industrial Processes, National Engineering School of Gabes
关键词
Fractional-order Wiener model; Levenberg–Marquardt algorithm; Luenberger observer; Parameter estimation; Recursive least squares algorithm; State estimation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper addresses both the problems of identification and state estimation of the class of nonlinear fractional systems. Using the combined state and parameter estimation approach, a new method of estimation serving to estimate simultaneously the unknown parameters, the unknown fractional orders and the inaccessible states, is proposed for the discrete fractional-order Wiener systems. The principle is that the estimation of the states uses the estimates of the parameters and the identification of the parameters utilizes the estimated states. By minimizing the defined criterion, which is non-convex and nonlinear in the parameters, the model parameters are firstly identified using the recursive least squares. Then, the fractional orders are determined with the Levenberg–Marquardt algorithm. Next, the estimates of the parameters and the orders will be used to estimate the immeasurable states based on the extended Luenberger observer. To prove the consistence of the proposed algorithm, a complete convergence analysis is developed. Finally, the effectiveness of the suggested method is illustrated in simulation examples.
引用
收藏
页码:5366 / 5391
页数:25
相关论文
共 50 条
  • [41] On dynamic sliding mode control of nonlinear fractional-order systems using sliding observer
    Karami-Mollaee, Ali
    Tirandaz, Hamed
    Barambones, Oscar
    NONLINEAR DYNAMICS, 2018, 92 (03) : 1379 - 1393
  • [42] On dynamic sliding mode control of nonlinear fractional-order systems using sliding observer
    Ali Karami-Mollaee
    Hamed Tirandaz
    Oscar Barambones
    Nonlinear Dynamics, 2018, 92 : 1379 - 1393
  • [43] NONLINEAR STATE OBSERVER DESIGN FOR PROJECTIVE SYNCHRONIZATION OF FRACTIONAL-ORDER PERMANENT MAGNET SYNCHRONOUS MOTOR
    Liu, Ling
    Liang, Deliang
    Liu, Chongxin
    Zhang, Qun
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2012, 26 (30):
  • [44] DESIGN OF OPTIMAL FRACTIONAL LUENBERGER OBSERVERS FOR LINEAR FRACTIONAL-ORDER SYSTEMS
    Dabiri, Arman
    Butcher, Eric A.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2017, VOL 6, 2017,
  • [45] Iterative parameter estimation for a class of fractional-order Hammerstein nonlinear systems disturbed by colored noise
    Wang, Junwei
    Ji, Yan
    Ding, Feng
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2025,
  • [46] A parameter estimation method for fractional-order nonlinear systems based on improved whale optimization algorithm
    Ren, Gong
    Yang, Renhuan
    Yang, Renyu
    Zhang, Pei
    Yang, Xiuzeng
    Xu, Chuangbiao
    Hu, Baoguo
    Zhang, Huatao
    Lu, Yaosheng
    Cai, Yanning
    MODERN PHYSICS LETTERS B, 2019, 33 (07):
  • [47] A New Observer Design for the Joint Estimation of States and Unknown Inputs for a Class of Nonlinear Fractional-Order Systems
    Peng, Chenchen
    Yang, Haiyi
    Yang, Anqing
    Ren, Ling
    MATHEMATICS, 2024, 12 (08)
  • [48] An innovative parameter estimation for fractional-order systems in the presence of outliers
    Cui, Rongzhi
    Wei, Yiheng
    Chen, Yuquan
    Cheng, Songsong
    Wang, Yong
    NONLINEAR DYNAMICS, 2017, 89 (01) : 453 - 463
  • [49] An innovative parameter estimation for fractional-order systems in the presence of outliers
    Rongzhi Cui
    Yiheng Wei
    Yuquan Chen
    Songsong Cheng
    Yong Wang
    Nonlinear Dynamics, 2017, 89 : 453 - 463
  • [50] Observer design for a class of nonlinear fractional-order systems with unknown input
    Kong, Shulan
    Saif, Mehrdad
    Liu, Bing
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (13): : 5503 - 5518