Parameter and State Estimation of Nonlinear Fractional-Order Model Using Luenberger Observer

被引:0
|
作者
Soumaya Marzougui
Saïda Bedoui
Asma Atitallah
Kamel Abderrahim
机构
[1] University of Gabes,Research Laboratory of Numerical Control of Industrial Processes, National Engineering School of Gabes
关键词
Fractional-order Wiener model; Levenberg–Marquardt algorithm; Luenberger observer; Parameter estimation; Recursive least squares algorithm; State estimation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper addresses both the problems of identification and state estimation of the class of nonlinear fractional systems. Using the combined state and parameter estimation approach, a new method of estimation serving to estimate simultaneously the unknown parameters, the unknown fractional orders and the inaccessible states, is proposed for the discrete fractional-order Wiener systems. The principle is that the estimation of the states uses the estimates of the parameters and the identification of the parameters utilizes the estimated states. By minimizing the defined criterion, which is non-convex and nonlinear in the parameters, the model parameters are firstly identified using the recursive least squares. Then, the fractional orders are determined with the Levenberg–Marquardt algorithm. Next, the estimates of the parameters and the orders will be used to estimate the immeasurable states based on the extended Luenberger observer. To prove the consistence of the proposed algorithm, a complete convergence analysis is developed. Finally, the effectiveness of the suggested method is illustrated in simulation examples.
引用
收藏
页码:5366 / 5391
页数:25
相关论文
共 50 条
  • [31] STABILITY OF FRACTIONAL-ORDER NONLINEAR SYSTEMS DEPENDING ON A PARAMETER
    Ben Makhlouf, Abdellatif
    Hammami, Mohamed Ali
    Sioud, Khaled
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (04) : 1309 - 1321
  • [32] Fractional-Order Echo State Network Backstepping Control of Fractional-Order Nonlinear Systems
    Liu, Heng
    Shi, Jiangteng
    Cao, Jinde
    Pan, Yongping
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (01): : 519 - 532
  • [33] Parameter estimation for fractional-order nonlinear systems based on improved sparrow search algorithm
    Zhou, Yongqiang
    Yang, Renhuan
    Chen, Yibin
    Huang, Qidong
    Shen, Chao
    Yang, Xiuzeng
    Zhang, Ling
    Wei, Mengyu
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2024, 35 (10):
  • [34] Anticipating Synchronization of the Fractional-order System Via Nonlinear Observer
    Zhou, Shangbo
    Zhu, Hao
    2009 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS PROCEEDINGS, VOLUMES I & II: COMMUNICATIONS, NETWORKS AND SIGNAL PROCESSING, VOL I/ELECTRONIC DEVICES, CIRUITS AND SYSTEMS, VOL II, 2009, : 858 - 862
  • [35] A Modified Artificial Bee Colony Algorithm for Parameter Estimation of Fractional-Order Nonlinear Systems
    Cai, Di
    Yu, Yongguang
    Wei, Jiamin
    IEEE ACCESS, 2018, 6 : 48600 - 48610
  • [36] LAG SYNCHRONIZATION OF THE FRACTIONAL-ORDER SYSTEM VIA NONLINEAR OBSERVER
    Zhu, Hao
    He, Zhongshi
    Zhou, Shangbo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (29): : 3951 - 3964
  • [37] A New Fractional-Order Grey Prediction Model without a Parameter Estimation Process
    Wang, Yadong
    Liu, Chong
    FRACTAL AND FRACTIONAL, 2024, 8 (07)
  • [38] State estimation for fractional-order neural networks
    Wang, Fei
    Yang, Yongqing
    Hu, Manfeng
    Xu, Xianyun
    OPTIK, 2015, 126 (23): : 4083 - 4086
  • [39] Fractional Order PV/T Model Design and Estimation using the Fractional Observer
    Aziz, Amer
    Liaquat, Muwahida
    Bhatti, Aamer Iqbal
    Ouhsaine, Lahoucine
    PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS (ICINCO), 2021, : 649 - 655
  • [40] Observer Design for Fractional-Order Polynomial Fuzzy Systems Depending on a Parameter
    Gassara, Hamdi
    Rhaima, Mohamed
    Mchiri, Lassaad
    Ben Makhlouf, Abdellatif
    FRACTAL AND FRACTIONAL, 2024, 8 (12)