Approximation algorithms for solving the line-capacitated minimum Steiner tree problem

被引:0
|
作者
Jianping Li
Wencheng Wang
Junran Lichen
Suding Liu
Pengxiang Pan
机构
[1] Yunnan University,Department of Mathematics
[2] Chinese Academy of Sciences,Institute of Applied Mathematics, Academy of Mathematics and Systems Science
[3] School of Mathematics and Physics,undefined
[4] Beijing University of Chemical Technology,undefined
来源
关键词
Combinatorial optimization; Locations of lines; Line-capacitated Steiner trees; Approximation algorithms; Exact algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we address the line-capacitated minimum Steiner tree problem (the Lc-MStT problem, for short), which is a variant of the (Euclidean) capacitated minimum Steiner tree problem and defined as follows. Given a set X={r1,r2,…,rn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=\{r_{1},r_{2},\ldots , r_{n}\}$$\end{document} of n terminals in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^2$$\end{document}, a demand function d:X→N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d:X \rightarrow {\mathbb {N}}$$\end{document} and a positive integer C, we are asked to determine the location of a line l and a Steiner tree Tl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_l$$\end{document} to interconnect these n terminals in X and at least one point located on this line l such that the total demand of terminals in each maximal subtree (of Tl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_l$$\end{document}) connected to the line l, where the terminals in such maximal subtree are all located at the same side of this line l, does not exceed the bound C. The objective is to minimize total weight ∑e∈Tlw(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{e\in T_l}w(e)$$\end{document} of such a Steiner tree Tl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_l$$\end{document} among all line-capacitated Steiner trees mentioned-above, where weight w(e)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(e)=0$$\end{document} if two endpoints of that edge e∈Tl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in T_l$$\end{document} are located on the line l and otherwise weight w(e) is the Euclidean distance between two endpoints of that edge e∈Tl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in T_l$$\end{document}. In addition, when this line l is as an input in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^2$$\end{document} and ∑r∈Xd(r)≤C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{r\in X} d(r) \le C$$\end{document} holds, we refer to this version as the 1-line-fixed minimum Steiner tree problem (the 1Lf-MStT problem, for short). We obtain three main results. (1) Given a ρst\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{st}$$\end{document}-approximation algorithm to solve the Euclidean minimum Steiner tree problem and a ρ1Lf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{1Lf}$$\end{document}-approximation algorithm to solve the 1Lf-MStT problem, respectively, we design a (ρstρ1Lf+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\rho _{st}\rho _{1Lf}+2)$$\end{document}-approximation algorithm to solve the Lc-MStT problem. (2) Whenever demand of each terminal r∈X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\in X$$\end{document} is less than C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{C}{2}$$\end{document}, we provide a (ρ1Lf+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\rho _{1Lf}+2)$$\end{document}-approximation algorithm to resolve the Lc-MStT problem. (3) Whenever demand of each terminal r∈X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\in X$$\end{document} is at least C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{C}{2}$$\end{document}, using the Edmonds’ algorithm to solve the minimum weight perfect matching as a subroutine, we present an exact algorithm in polynomial time to resolve the Lc-MStT problem.
引用
收藏
页码:687 / 714
页数:27
相关论文
共 50 条
  • [1] Approximation algorithms for solving the line-capacitated minimum Steiner tree problem
    Li, Jianping
    Wang, Wencheng
    Lichen, Junran
    Liu, Suding
    Pan, Pengxiang
    JOURNAL OF GLOBAL OPTIMIZATION, 2022, 84 (03) : 687 - 714
  • [2] Approximation Algorithms for Solving the 1-Line Minimum Steiner Tree of Line Segments Problem
    Li, Jian-Ping
    Liu, Su-Ding
    Lichen, Jun-Ran
    Pan, Peng-Xiang
    Wang, Wen-Cheng
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024, 12 (03) : 729 - 755
  • [3] Approximation algorithms for solving the 1-line Euclidean minimum Steiner tree problem
    Li, Jianping
    Liu, Suding
    Lichen, Junran
    Wang, Wencheng
    Zheng, Yujie
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (02) : 492 - 508
  • [4] Approximation algorithms for solving the 1-line Euclidean minimum Steiner tree problem
    Jianping Li
    Suding Liu
    Junran Lichen
    Wencheng Wang
    Yujie Zheng
    Journal of Combinatorial Optimization, 2020, 39 : 492 - 508
  • [5] Approximation algorithm for solving the 1-line Steiner tree problem with minimum number of Steiner points
    Liu, Suding
    OPTIMIZATION LETTERS, 2024, 18 (06) : 1421 - 1435
  • [6] APPROXIMATION ALGORITHMS FOR THE TERMINAL STEINER TREE PROBLEM
    Chen, Yen Hung
    Lin, Ying Chin
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2018, 17 (03) : 246 - 255
  • [7] On approximation algorithms for the terminal Steiner tree problem
    Drake, DE
    Hougardy, S
    INFORMATION PROCESSING LETTERS, 2004, 89 (01) : 15 - 18
  • [8] Approximation algorithms for the capacitated minimum spanning tree problem and its variants in network design
    Jothi, R
    Raghavachari, B
    AUTOMATA , LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2004, 3142 : 805 - 818
  • [9] Approximation Algorithms for the Capacitated Minimum Spanning Tree Problem and its Variants in Network Design
    Jothi, Raja
    Raghavachari, Balaji
    ACM TRANSACTIONS ON ALGORITHMS, 2005, 1 (02) : 265 - 282
  • [10] Algorithms for the minimum diameter terminal Steiner tree problem
    Wei Ding
    Ke Qiu
    Journal of Combinatorial Optimization, 2014, 28 : 837 - 853