Big data in official statistics [Big Data in der amtlichen Statistik]

被引:0
|
作者
Zwick M. [1 ,2 ]
机构
[1] Goethe-Universität Frankfurt, Grüneburgplatz 1, Frankfurt am Main
[2] Statistisches Amt der Europäischen Union (Eurostat), Europäische Kommission, Luxembourg
关键词
Big data; Data protection; Data quality; European Statistical System; Statistical education;
D O I
10.1007/s00103-015-2188-4
中图分类号
学科分类号
摘要
The concept of “big data” stands to change the face of official statistics over the coming years, having an impact on almost all aspects of data production. The tasks of future statisticians will not necessarily be to produce new data, but rather to identify and make use of existing data to adequately describe social and economic phenomena. Until big data can be used correctly in official statistics, a lot of questions need to be answered and problems solved: the quality of data, data protection, privacy, and the sustainable availability are some of the more pressing issues to be addressed. The essential skills of official statisticians will undoubtedly change, and this implies a number of challenges to be faced by statistical education systems, in universities, and inside the statistical offices. The national statistical offices of the European Union have concluded a concrete strategy for exploring the possibilities of big data for official statistics, by means of the Big Data Roadmap and Action Plan 1.0. This is an important first step and will have a significant influence on implementing the concept of big data inside the statistical offices of Germany. © 2015, Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:838 / 843
页数:5
相关论文
共 50 条
  • [31] Integrating probability and big non-probability samples data to produce Official Statistics
    Golini, Natalia
    Righi, Paolo
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2024, 33 (02): : 555 - 580
  • [32] Embedded Analytics and Statistics for Big Data
    Louridas, Panos
    Ebert, Christof
    [J]. IEEE SOFTWARE, 2013, 30 (06) : 33 - 39
  • [33] Big data for official migration statistics: Evidence from 29 national statistical institutions
    Ahmad Yar, Ahmad Wali
    Bircan, Tuba
    [J]. BIG DATA & SOCIETY, 2023, 10 (02)
  • [34] Statistics and Big Data: Different Perspectives
    Nunes, Sandra
    Oliveira, Teresa A.
    Oliveira, Amilcar
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [35] The role of Statistics in the era of Big Data
    Sangalli, Laura M.
    [J]. STATISTICS & PROBABILITY LETTERS, 2018, 136 : 1 - 3
  • [36] Statistik zwischen Data Science, Artificial Intelligence und Big Data: Beiträge aus dem Kolloquium „Make Statistics great again“Statistics between data science, artificial intelligence and big data: contributions of the colloquium “Make Statistics Great Again”
    Ulrich Rendtel
    Willi Seidel
    Christine Müller
    Florian Meinfelder
    Joachim Wagner
    Jürgen Chlumsky
    Markus Zwick
    [J]. AStA Wirtschafts- und Sozialstatistisches Archiv, 2022, 16 (2) : 97 - 147
  • [37] Big data (Big data)
    Miguel Castagnino, Juan
    [J]. ACTA BIOQUIMICA CLINICA LATINOAMERICANA, 2018, 52 (03): : 279 - 280
  • [38] Big data is or big data are
    Samaranayake, L.
    [J]. BRITISH DENTAL JOURNAL, 2018, 224 (12) : 916 - 916
  • [39] Big data is or big data are
    L. Samaranayake
    [J]. British Dental Journal, 2018, 224 : 916 - 916
  • [40] Big-BOE: Fusing Spanish Official Gazette with Big Data Technology
    Basanta-Val, Pablo
    Sanchez-Fernandez, Luis
    [J]. BIG DATA, 2018, 6 (02) : 124 - 138