Big data in official statistics [Big Data in der amtlichen Statistik]

被引:0
|
作者
Zwick M. [1 ,2 ]
机构
[1] Goethe-Universität Frankfurt, Grüneburgplatz 1, Frankfurt am Main
[2] Statistisches Amt der Europäischen Union (Eurostat), Europäische Kommission, Luxembourg
关键词
Big data; Data protection; Data quality; European Statistical System; Statistical education;
D O I
10.1007/s00103-015-2188-4
中图分类号
学科分类号
摘要
The concept of “big data” stands to change the face of official statistics over the coming years, having an impact on almost all aspects of data production. The tasks of future statisticians will not necessarily be to produce new data, but rather to identify and make use of existing data to adequately describe social and economic phenomena. Until big data can be used correctly in official statistics, a lot of questions need to be answered and problems solved: the quality of data, data protection, privacy, and the sustainable availability are some of the more pressing issues to be addressed. The essential skills of official statisticians will undoubtedly change, and this implies a number of challenges to be faced by statistical education systems, in universities, and inside the statistical offices. The national statistical offices of the European Union have concluded a concrete strategy for exploring the possibilities of big data for official statistics, by means of the Big Data Roadmap and Action Plan 1.0. This is an important first step and will have a significant influence on implementing the concept of big data inside the statistical offices of Germany. © 2015, Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:838 / 843
页数:5
相关论文
共 50 条
  • [21] Big Data for Government Policy: Potential Implementations of BigData for Official Statistics in Indonesia
    Pramana, Setia
    Yuniarto, Budi
    Kurniawan, Robert
    Yordani, Ricky
    Lee, Jonggun
    Amin, Imaduddin
    Putu, Ni Luh
    Satyaning, P. P.
    Riyadi, Yulistina
    Hasyyati, Atika Nashirah
    Indriani, Rina
    [J]. 2017 INTERNATIONAL WORKSHOP ON BIG DATA AND INFORMATION SECURITY (IWBIS 2017), 2017, : 17 - 21
  • [22] Official statistics embrace big data: a review of current and developing international practice
    Plekhanov, Dmitriy
    [J]. INTERNATIONAL CONFERENCE ON ELECTRONIC GOVERNANCE AND OPEN SOCIETY: CHALLENGES IN EURASIA (EGOSE 2017), 2017, : 22 - 26
  • [23] Comments on: Data science, big data and statistics
    Ricardo Cao
    [J]. TEST, 2019, 28 : 664 - 670
  • [24] Comments on: Data science, big data and statistics
    Tsay, Ruey S.
    [J]. TEST, 2019, 28 (02) : 357 - 359
  • [25] Comments on: Data science, big data and statistics
    Ruey S. Tsay
    [J]. TEST, 2019, 28 : 357 - 359
  • [26] Comments on: Data science, big data and statistics
    Cao, Ricardo
    [J]. TEST, 2019, 28 (03) : 664 - 670
  • [27] Rejoinder on: Data science, big data and statistics
    Pedro Galeano
    Daniel Peña
    [J]. TEST, 2019, 28 : 363 - 368
  • [28] Erratum to: Big Data in electrophysiologyErratum zu: Big data in der Elektrophysiologie
    Sotirios Nedios
    Konstantinos Iliodromitis
    Christopher Kowalewski
    Andreas Bollmann
    Gerhard Hindricks
    Nikolaos Dagres
    Harilaos Bogossian
    [J]. Herzschrittmachertherapie + Elektrophysiologie, 2022, 33 (2) : 242 - 242
  • [29] Big Data, Statistik und die Datenschutz-Grundverordnung
    Philipp Richter
    [J]. Datenschutz und Datensicherheit - DuD, 2016, 40 (9) : 581 - 586
  • [30] Big Data in der BildgebungBig data in imaging
    Philipp Sewerin
    Benedikt Ostendorf
    Axel J. Hueber
    Arnd Kleyer
    [J]. Zeitschrift für Rheumatologie, 2018, 77 (3) : 203 - 208