Hereditary Uniserial Categories with Serre Duality

被引:0
|
作者
Adam-Christiaan van Roosmalen
机构
[1] Universität Bielefeld,Fakultät für Mathematik
来源
关键词
Hereditary categories; Serre duality; 18E10; 16G30;
D O I
暂无
中图分类号
学科分类号
摘要
An abelian Krull-Schmidt category is said to be uniserial if the isomorphism classes of subobjects of a given indecomposable object form a linearly ordered poset. In this paper, we classify the hereditary uniserial categories with Serre duality. They fall into two types: the first type is given by the representations of the quiver An with linear orientation (and infinite variants thereof), the second type by tubes (and an infinite variant). These last categories give a new class of hereditary categories with Serre duality, called big tubes.
引用
收藏
页码:1291 / 1322
页数:31
相关论文
共 50 条
  • [31] Serre duality for Khovanov–Rozansky homology
    Eugene Gorsky
    Matthew Hogancamp
    Anton Mellit
    Keita Nakagane
    Selecta Mathematica, 2019, 25
  • [32] Partial Serre duality and cocompact objects
    Steffen Oppermann
    Chrysostomos Psaroudakis
    Torkil Stai
    Selecta Mathematica, 2023, 29
  • [33] Duality Categories
    Ksouri, Ramzi
    APPLIED CATEGORICAL STRUCTURES, 2016, 24 (03) : 283 - 314
  • [34] Types of Serre subcategories of Grothendieck categories
    Feng, Jian
    Zhang, Pu
    JOURNAL OF ALGEBRA, 2018, 508 : 16 - 34
  • [35] Duality Categories
    Ramzi Ksouri
    Applied Categorical Structures, 2016, 24 : 283 - 314
  • [36] Extremal transitions via quantum Serre duality
    Rongxiao Mi
    Mark Shoemaker
    Mathematische Annalen, 2023, 386 : 821 - 876
  • [37] Extremal transitions via quantum Serre duality
    Mi, Rongxiao
    Shoemaker, Mark
    MATHEMATISCHE ANNALEN, 2023, 386 (1-2) : 821 - 876
  • [38] Derived equivalences and Serre duality for Gorenstein algebras
    Abe, Hiroki
    Hoshino, Mitsuo
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (11) : 2156 - 2166
  • [39] Serre duality for Khovanov-Rozansky homology
    Gorsky, Eugene
    Hogancamp, Matthew
    Mellit, Anton
    Nakagane, Keita
    SELECTA MATHEMATICA-NEW SERIES, 2019, 25 (05):
  • [40] A separation theorem and Serre duality for the Dolbeault cohomology
    Laurent-Thiébaut, C
    Leiterer, J
    ARKIV FOR MATEMATIK, 2002, 40 (02): : 301 - 321