Hereditary Uniserial Categories with Serre Duality

被引:0
|
作者
Adam-Christiaan van Roosmalen
机构
[1] Universität Bielefeld,Fakultät für Mathematik
来源
关键词
Hereditary categories; Serre duality; 18E10; 16G30;
D O I
暂无
中图分类号
学科分类号
摘要
An abelian Krull-Schmidt category is said to be uniserial if the isomorphism classes of subobjects of a given indecomposable object form a linearly ordered poset. In this paper, we classify the hereditary uniserial categories with Serre duality. They fall into two types: the first type is given by the representations of the quiver An with linear orientation (and infinite variants thereof), the second type by tubes (and an infinite variant). These last categories give a new class of hereditary categories with Serre duality, called big tubes.
引用
收藏
页码:1291 / 1322
页数:31
相关论文
共 50 条
  • [21] SERRE DUALITY ON COMPLEX SUPERMANIFOLDS
    HASKE, C
    WELLS, RO
    DUKE MATHEMATICAL JOURNAL, 1987, 54 (02) : 493 - 500
  • [22] SERRE DUALITY FOR PROJECTIVE SUPERMANIFOLDS
    OGIEVETSKII, OV
    PENKOV, IB
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1984, 18 (01) : 68 - 69
  • [23] Poincare duality and Serre fibrations
    Brodskij, NB
    Shchepin, EV
    TOPOLOGY AND ITS APPLICATIONS, 1997, 80 (1-2) : 55 - 61
  • [24] Serre Functors and Graded Categories
    Joseph Grant
    Algebras and Representation Theory, 2023, 26 : 2113 - 2180
  • [25] Serre Functors and Graded Categories
    Grant, Joseph
    ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (05) : 2113 - 2180
  • [26] SERRE DUALITY FOR RIGID ANALYTIC SPACES
    VANDERPUT, M
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1992, 3 (02): : 219 - 235
  • [27] SERRE DUALITY ON COMPLEX ANALYTIC SPACES
    ANDREOTTI, A
    KAS, A
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1971, 50 (04): : 397 - +
  • [28] Partial Serre duality and cocompact objects
    Oppermann, Steffen
    Psaroudakis, Chrysostomos
    Stai, Torkil
    SELECTA MATHEMATICA-NEW SERIES, 2023, 29 (04):
  • [29] Explicit Serre duality on complex spaces
    Ruppenthal, Jean
    Kalm, Hakan Samuelsson
    Wulcan, Elizabeth
    ADVANCES IN MATHEMATICS, 2017, 305 : 1320 - 1355
  • [30] Serre duality for noncommutative projective schemes
    Yekutieli, A
    Zhang, JJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (03) : 697 - 707