Solving Problems with Unknown Solution Length at Almost No Extra Cost

被引:0
|
作者
Benjamin Doerr
Carola Doerr
Timo Kötzing
机构
[1] École Polytechnique,
[2] CNRS,undefined
[3] LIX - UMR 7161,undefined
[4] Sorbonne Université,undefined
[5] CNRS,undefined
[6] LIP6,undefined
[7] Hasso-Plattner-Institut,undefined
来源
Algorithmica | 2019年 / 81卷
关键词
Black-box optimization; Evolutionary computation; Runtime analysis; Uncertainty; Unknown solution length;
D O I
暂无
中图分类号
学科分类号
摘要
Following up on previous work of Cathabard et al. (in: Proceedings of foundations of genetic algorithms (FOGA’11), ACM, 2011) we analyze variants of the (1 + 1) evolutionary algorithm (EA) for problems with unknown solution length. For their setting, in which the solution length is sampled from a geometric distribution, we provide mutation rates that yield for both benchmark functions OneMax and LeadingOnes an expected optimization time that is of the same order as that of the (1 + 1) EA knowing the solution length. More than this, we show that almost the same run times can be achieved even if no a priori information on the solution length is available. We also regard the situation in which neither the number nor the positions of the bits with an influence on the fitness function are known. Solving an open problem from Cathabard et al. we show that, for arbitrary s∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in {\mathbb {N}}$$\end{document}, such OneMax and LeadingOnes instances can be solved, simultaneously for all n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\in {\mathbb {N}}$$\end{document}, in expected time O(n(log(n))2loglog(n)…log(s-1)(n)(log(s)(n))1+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n (\log (n))^2 \log \log (n) \ldots \log ^{(s-1)}(n) (\log ^{(s)}(n))^{1+\varepsilon })$$\end{document} and O(n2log(n)loglog(n)…log(s-1)(n)(log(s)(n))1+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2 \log (n) \log \log (n) \ldots \log ^{(s-1)}(n) (\log ^{(s)}(n))^{1+\varepsilon })$$\end{document}, respectively; that is, in almost the same time as if n and the relevant bit positions were known. For the LeadingOnes case, we prove lower bounds of same asymptotic order of magnitude apart from the (log(s)(n))ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\log ^{(s)}(n))^{\varepsilon }$$\end{document} factor. Aiming at closing this arbitrarily small remaining gap, we realize that there is no asymptotically best performance for this problem. For any algorithm solving, for all n, all instances of size n in expected time at most T(n), there is an algorithm doing the same in time T′(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T'(n)$$\end{document} with T′=o(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T'=o(T)$$\end{document}. For OneMax we show results of similar flavor.
引用
收藏
页码:703 / 748
页数:45
相关论文
共 50 条
  • [31] Solving semantic problems with odd-length cycles in argumentation
    Baroni, P
    Giacomin, M
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDING, 2003, 2711 : 440 - 451
  • [32] SOLVING PARTITION PROBLEMS ALMOST ALWAYS REQUIRES PUSHING MANY VERTICES AROUND
    Kanj, Iyad
    Komusiewicz, Christian
    Sorge, Manuel
    van Leeuwen, Erik Jan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (01) : 640 - 681
  • [33] SOLVING NP-HARD PROBLEMS ON GRAPHS THAT ARE ALMOST TREES AND AN APPLICATION TO FACILITY LOCATION-PROBLEMS
    GUREVICH, Y
    STOCKMEYER, L
    VISHKIN, U
    JOURNAL OF THE ACM, 1984, 31 (03) : 459 - 473
  • [34] Theoretical foundation for solving `no-solution' problems by abstraction
    Akama, Kiyoshi
    Mabuchi, Hiroshi
    Miyamoto, Eiichi
    Systems and Computers in Japan, 2000, 31 (01) : 1 - 10
  • [35] Using contracted solution graphs for solving reconfiguration problems
    Bonsma, Paul
    Paulusma, Daniel
    ACTA INFORMATICA, 2019, 56 (7-8) : 619 - 648
  • [36] STRATEGIES AND SOLUTION TIMES IN SIMPLE MEDICAL PROBLEMS SOLVING
    GROEN, G
    DAUPHINEE, D
    MCQUEEN, M
    BULLETIN OF THE PSYCHONOMIC SOCIETY, 1981, 18 (02) : 66 - 66
  • [37] A New Solution Method for Solving Transit Assignment Problems
    Le Luong Vuong
    Tran Duc Quynh
    Nguyen Quang Thuan
    ADVANCES IN ENGINEERING RESEARCH AND APPLICATION, 2019, 63 : 70 - 76
  • [38] Numerical solution technique for solving isoperimetric variational problems
    Mahdy, A. M. S.
    Youssef, E. S. M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2021, 32 (01):
  • [39] Numerical Solution of Turbulence Problems by Solving Burgers' Equation
    Cordero, Alicia
    Franques, Antonio
    Torregrosa, Juan R.
    ALGORITHMS, 2015, 8 (02) : 224 - 233
  • [40] FIXED POINT SOLUTION METHODS FOR SOLVING EQUILIBRIUM PROBLEMS
    Pham Ngoc Anh
    Nguyen Duc Hien
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (02) : 479 - 499