Solving Problems with Unknown Solution Length at Almost No Extra Cost

被引:0
|
作者
Benjamin Doerr
Carola Doerr
Timo Kötzing
机构
[1] École Polytechnique,
[2] CNRS,undefined
[3] LIX - UMR 7161,undefined
[4] Sorbonne Université,undefined
[5] CNRS,undefined
[6] LIP6,undefined
[7] Hasso-Plattner-Institut,undefined
来源
Algorithmica | 2019年 / 81卷
关键词
Black-box optimization; Evolutionary computation; Runtime analysis; Uncertainty; Unknown solution length;
D O I
暂无
中图分类号
学科分类号
摘要
Following up on previous work of Cathabard et al. (in: Proceedings of foundations of genetic algorithms (FOGA’11), ACM, 2011) we analyze variants of the (1 + 1) evolutionary algorithm (EA) for problems with unknown solution length. For their setting, in which the solution length is sampled from a geometric distribution, we provide mutation rates that yield for both benchmark functions OneMax and LeadingOnes an expected optimization time that is of the same order as that of the (1 + 1) EA knowing the solution length. More than this, we show that almost the same run times can be achieved even if no a priori information on the solution length is available. We also regard the situation in which neither the number nor the positions of the bits with an influence on the fitness function are known. Solving an open problem from Cathabard et al. we show that, for arbitrary s∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in {\mathbb {N}}$$\end{document}, such OneMax and LeadingOnes instances can be solved, simultaneously for all n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\in {\mathbb {N}}$$\end{document}, in expected time O(n(log(n))2loglog(n)…log(s-1)(n)(log(s)(n))1+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n (\log (n))^2 \log \log (n) \ldots \log ^{(s-1)}(n) (\log ^{(s)}(n))^{1+\varepsilon })$$\end{document} and O(n2log(n)loglog(n)…log(s-1)(n)(log(s)(n))1+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2 \log (n) \log \log (n) \ldots \log ^{(s-1)}(n) (\log ^{(s)}(n))^{1+\varepsilon })$$\end{document}, respectively; that is, in almost the same time as if n and the relevant bit positions were known. For the LeadingOnes case, we prove lower bounds of same asymptotic order of magnitude apart from the (log(s)(n))ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\log ^{(s)}(n))^{\varepsilon }$$\end{document} factor. Aiming at closing this arbitrarily small remaining gap, we realize that there is no asymptotically best performance for this problem. For any algorithm solving, for all n, all instances of size n in expected time at most T(n), there is an algorithm doing the same in time T′(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T'(n)$$\end{document} with T′=o(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T'=o(T)$$\end{document}. For OneMax we show results of similar flavor.
引用
收藏
页码:703 / 748
页数:45
相关论文
共 50 条
  • [21] SIMPLIFIED SOLUTION TO COST OR MARKET PROBLEMS
    HARTMAN, MA
    ACCOUNTING REVIEW, 1966, 41 (01): : 127 - 129
  • [22] COST PROBLEMS OF TRACTION SYSTEMS AND THEIR SOLUTION
    Bliss, Zenas W.
    BULLETIN OF THE NATIONAL TAX ASSOCIATION, 1920, 5 (05): : 141 - 145
  • [23] Extra-optimal methods for solving ill-posed problems
    Leonov, Alexander S.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2012, 20 (5-6): : 637 - 665
  • [24] CONSTRUCTIVE METHODS FOR SOLVING EXTRA-SPATIAL PROBLEMS OF VIBRATION EQUATIONS
    HONSALEK, U
    NIEMEYER, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1978, 58 (07): : T374 - T375
  • [25] Development of Thai Word Segmentation Technique for Solving Problems with Unknown Words
    Mahatthanachai, Chanin
    Tantranont, Nuttiya
    Malaivongs, Kanchit
    Boonchieng, Ekkarat
    2015 INTERNATIONAL COMPUTER SCIENCE AND ENGINEERING CONFERENCE (ICSEC), 2015, : 169 - 174
  • [26] Solving Payment Cost Co-optimization Problems
    Han, Xu
    Luh, Peter B.
    Bragin, Mikhail A.
    Yan, Joseph H.
    Yu, Nanpeng
    Stern, Gary A.
    2012 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING, 2012,
  • [27] Solving minimum-cost shared arborescence problems
    Alvarez-Miranda, Eduardo
    Ljubic, Ivana
    Luipersbeck, Martin
    Sinnl, Markus
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 258 (03) : 887 - 901
  • [28] Biosolids Drying: Solving Municipal Regulation and Cost Problems
    Igoe, John
    Bina, Enzo
    Dal Pan, Mauro
    WATER PRACTICE AND TECHNOLOGY, 2008, 3 (04):
  • [29] SOLVING MINIMUM-COST FEED MIX PROBLEMS
    Swanson, Earl R.
    JOURNAL OF FARM ECONOMICS, 1955, 37 (01): : 135 - 139
  • [30] An insight into the sources of multiple referents for the unknown in the algebraic solving of word problems
    Soneira, Carlos
    Antonio Gonzalez-Calero, Jose
    Arnau, David
    PROCEEDINGS OF THE TENTH CONGRESS OF THE EUROPEAN SOCIETY FOR RESEARCH IN MATHEMATICS EDUCATION (CERME10), 2017, : 504 - 511