共 50 条
On the gonality sequence of an algebraic curve
被引:0
|作者:
H. Lange
G. Martens
机构:
[1] Universität Erlangen-Nürnberg,Department Mathematik
来源:
Manuscripta Mathematica
|
2012年
/
137卷
关键词:
Primary: 14H45;
Secondary: 14H51;
32L10;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
For any smooth irreducible projective curve X, the gonality sequence \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\{d_r \;| \; r \in \mathbb N\}}$$\end{document} is a strictly increasing sequence of positive integer invariants of X. In most known cases dr+1 is not much bigger than dr. In our terminology this means the numbers dr satisfy the slope inequality. It is the aim of this paper to study cases when this is not true. We give examples for this of extremal curves in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb P}^r}$$\end{document}, for curves on a general K3-surface in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb P}^r}$$\end{document} and for complete intersections in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb P}^3}$$\end{document}.
引用
收藏
页码:457 / 473
页数:16
相关论文