Piecewise algebraic curve

被引:11
|
作者
Wang, RH [1 ]
Lai, YS [1 ]
机构
[1] Dalian Univ Technol, Inst Math Sci, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
number of real intersection points; discriminant sequence; rotation degree;
D O I
10.1016/S0377-0427(01)00567-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A piecewise algebraic curve is defined by a bivariate spline function. Using the techniques of the B-net form of bivariate splines function, discriminant sequence of polynomial (cf. Yang Lu et al. (Sci. China Ser. E 39(6) (1996) 628) and Yang Lu et al. (Nonlinear Algebraic Equation System and Automated Theorem Proving, Shanghai Scientific and Technological Education Publishing House, Shanghai, 1996)) and the number of sign changes in the sequence of coefficients of the highest degree terms of sturm sequence, we determine the number of real intersection points of two piecewise algebraic curves whose common points are finite. A lower bound of the number of real intersection points is given in terms of the method of rotation degree of vector field. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:277 / 289
页数:13
相关论文
共 50 条
  • [1] Estimation of the Bezout number for piecewise algebraic curve
    Wang, RH
    Xu, ZQ
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (05): : 710 - 717
  • [2] Estimation of the Bezout number for piecewise algebraic curve
    王仁宏
    许志强
    Science China Mathematics, 2003, (05) : 710 - 717
  • [3] Estimation of the bezout number for piecewise algebraic curve
    Renhong Wang
    Zhiqiang Xu
    Science in China Series A: Mathematics, 2003, 46 : 710 - 717
  • [4] An algebraic-trigonometric blended piecewise curve
    Yan, Lanlan
    Huang, Tao
    Wen, Rongsheng
    Journal of Information and Computational Science, 2015, 12 (17): : 6491 - 6501
  • [5] The Nother and Riemann-Roch type theorems for piecewise algebraic curve
    Yi-sheng LAI & Ren-hong WANG College of Statistics and Mathematics
    ScienceinChina(SeriesA:Mathematics), 2007, (02) : 165 - 182
  • [6] The Nother and Riemann-Roch type theorems for piecewise algebraic curve
    Lai, Yi-sheng
    Wang, Ren-hong
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (02): : 165 - 182
  • [7] The Nöther and Riemann-Roch type theorems for piecewise algebraic curve
    Yi-sheng Lai
    Ren-hong Wang
    Science in China Series A: Mathematics, 2007, 50
  • [8] Limit Cycles for Discontinuous Planar Piecewise Linear Differential Systems Separated by an Algebraic Curve
    Llibre, Jaume
    Zhang, Xiang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (02):
  • [9] Piecewise algebraic varieties
    WANG Renhong and ZHU Chungang(Institute of Mathematical Sciences
    ProgressinNaturalScience, 2004, (07) : 16 - 20
  • [10] Piecewise algebraic varieties
    Wang, RH
    Zhu, CG
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2004, 14 (07) : 568 - 572