Estimation of the Bezout number for piecewise algebraic curve

被引:14
|
作者
Wang, RH [1 ]
Xu, ZQ [1 ]
机构
[1] Dalian Univ Technol, Inst Math Sci, Dalian 116024, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2003年 / 46卷 / 05期
关键词
piecewise algebraic curve; bezout theorem; triangulation; bivariate splines;
D O I
10.1360/02ys0136
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A piecewise algebraic curve is a curve determined by the zero set of a bivariate spline function. In this paper, a conjecture on triangulation is confirmed. The relation between the piecewise linear algebraic curve and four-color conjecture is also presented. By Morgan-Scott triangulation, we will show the instability of Bezout number of piecewise algebraic curves. By using the combinatorial optimization method, an upper bound of the Bezout number defined as the maximum finite number of intersection points of two piecewise algebraic curves is presented.
引用
收藏
页码:710 / 717
页数:8
相关论文
共 50 条
  • [1] Estimation of the bezout number for piecewise algebraic curve
    Renhong Wang
    Zhiqiang Xu
    [J]. Science in China Series A: Mathematics, 2003, 46 : 710 - 717
  • [2] Estimation of the Bezout number for piecewise algebraic curve
    王仁宏
    许志强
    [J]. Science China Mathematics, 2003, (05) : 710 - 717
  • [3] The Bezout Number of Piecewise Algebraic Curves
    Dian Xuan GONG
    Ren Hong WANG
    [J]. Acta Mathematica Sinica,English Series, 2012, (12) : 2535 - 2544
  • [4] The Bezout number of piecewise algebraic curves
    Gong, Dian Xuan
    Wang, Ren Hong
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (12) : 2535 - 2544
  • [5] The Bezout number of piecewise algebraic curves
    Dian Xuan Gong
    Ren Hong Wang
    [J]. Acta Mathematica Sinica, English Series, 2012, 28 : 2535 - 2544
  • [6] The Bezout number for piecewise algebraic curves
    Shi, XQ
    Wang, RH
    [J]. BIT, 1999, 39 (02): : 339 - 349
  • [7] The Bezout Number of Piecewise Algebraic Curves
    Dian Xuan GONG
    Ren Hong WANG
    [J]. Acta Mathematica Sinica, 2012, 28 (12) : 2535 - 2544
  • [8] The Bezout Number for Piecewise Algebraic Curves
    Xiquan Shi
    Renhong Wang
    [J]. BIT Numerical Mathematics, 1999, 39 : 339 - 349
  • [9] The Bezout number for linear piecewise algebraic curves
    Wang, Renhong
    Wang, Shaofan
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (02) : 1019 - 1030
  • [10] An upper bound of the Bezout number for piecewise algebraic curves
    Wu, Jinming
    Gong, Dianxuan
    Zhang, Xiaolei
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 273 : 214 - 224