GOOD FILTRATIONS FOR GENERALIZED SCHUR ALGEBRAS

被引:0
|
作者
ALEXANDER KLESHCHEV
ILAN WEINSCHELBAUM
机构
[1] University of Oregon,Department of Mathematics
来源
Transformation Groups | 2023年 / 28卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Given a quasi-hereditary superalgebra A, the first author and R. Muth have defined generalized Schur bi-superalgebras TA(n) and proved that these algebras are again quasi-hereditary. In particular, TA(n) comes with a family of standard modules. Developing the work of Donkin and Mathieu on good filtrations, we prove that tensor product of standard modules over TA(n) has a standard filtration.
引用
收藏
页码:1165 / 1190
页数:25
相关论文
共 50 条
  • [31] Brauer algebras, symplectic Schur algebras and Schur-Weyl duality
    Dipper, Richard
    Doty, Stephen
    Hu, Jun
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (01) : 189 - 213
  • [32] On Mixed Multiplicities of Good Filtrations
    Duong Quoc Viet
    Le Van Dinh
    ALGEBRA COLLOQUIUM, 2015, 22 (03) : 421 - 436
  • [33] Nilpotent Centralizers and Good Filtrations
    Achar, Pramod N.
    Hardesty, William
    TRANSFORMATION GROUPS, 2024, 29 (03) : 893 - 908
  • [34] FILTRATIONS, INTEGRAL DEPENDENCE, REDUCTION, F-GOOD FILTRATIONS
    DICHI, H
    SANGARE, D
    SOUMARE, M
    COMMUNICATIONS IN ALGEBRA, 1992, 20 (08) : 2393 - 2418
  • [35] Schur algebras of Brauer algebras I
    Anne Henke
    Steffen Koenig
    Mathematische Zeitschrift, 2012, 272 : 729 - 759
  • [36] Schur algebras of Brauer algebras, II
    Anne Henke
    Steffen Koenig
    Mathematische Zeitschrift, 2014, 276 : 1077 - 1099
  • [37] ON SCHUR ALGEBRAS AND RELATED ALGEBRAS, II
    DONKIN, S
    JOURNAL OF ALGEBRA, 1987, 111 (02) : 354 - 364
  • [38] Schur algebras of Brauer algebras I
    Henke, Anne
    Koenig, Steffen
    MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (3-4) : 729 - 759
  • [39] Schur algebras of Brauer algebras, II
    Henke, Anne
    Koenig, Steffen
    MATHEMATISCHE ZEITSCHRIFT, 2014, 276 (3-4) : 1077 - 1099
  • [40] Matroidal Schur algebras
    Tom Braden
    Carl Mautner
    Journal of Algebraic Combinatorics, 2017, 46 : 51 - 75