Schur algebras of Brauer algebras, II

被引:2
|
作者
Henke, Anne [1 ]
Koenig, Steffen [2 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX1 3LB, England
[2] Univ Stuttgart, Inst Algebra & Zahlentheorie, D-70569 Stuttgart, Germany
关键词
MODULES; FILTRATIONS;
D O I
10.1007/s00209-013-1233-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A classical problem of invariant theory and of Lie theory is to determine endomorphism rings of representations of classical groups, for instance of tensor powers of the natural module (Schur-Weyl duality) or of full direct sums of tensor products of exterior powers (Ringel duality). In this article, the endomorphism rings of full direct sums of tensor products of symmetric powers over symplectic and orthogonal groups are determined. These are shown to be isomorphic to Schur algebras of Brauer algebras as defined in Henke and Koenig (Math Z 272(3-4):729-759, 2012). This implies structural properties of the endomorphism rings, such as double centraliser properties, quasi-hereditary, and a universal property, as well as a classification of simple modules.
引用
收藏
页码:1077 / 1099
页数:23
相关论文
共 50 条
  • [1] Schur algebras of Brauer algebras, II
    Anne Henke
    Steffen Koenig
    [J]. Mathematische Zeitschrift, 2014, 276 : 1077 - 1099
  • [2] Schur algebras of Brauer algebras I
    Anne Henke
    Steffen Koenig
    [J]. Mathematische Zeitschrift, 2012, 272 : 729 - 759
  • [3] Schur algebras of Brauer algebras I
    Henke, Anne
    Koenig, Steffen
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (3-4) : 729 - 759
  • [4] Brauer algebras, symplectic Schur algebras and Schur-Weyl duality
    Dipper, Richard
    Doty, Stephen
    Hu, Jun
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (01) : 189 - 213
  • [5] Projective Schur algebras of nilpotent type are Brauer equivalent to radical algebras
    Aljadeff, E
    Sonn, J
    [J]. JOURNAL OF ALGEBRA, 1999, 220 (02) : 401 - 414
  • [6] ON SCHUR ALGEBRAS AND RELATED ALGEBRAS, II
    DONKIN, S
    [J]. JOURNAL OF ALGEBRA, 1987, 111 (02) : 354 - 364
  • [7] On Schur algebras and little Schur algebras
    Fu, Qiang
    [J]. JOURNAL OF ALGEBRA, 2009, 322 (05) : 1637 - 1652
  • [8] On the semisimplicity of the cyclotomic Brauer algebras, II
    Rui, Hebing
    Xu, Jie
    [J]. JOURNAL OF ALGEBRA, 2007, 312 (02) : 995 - 1010
  • [9] Brauer configuration algebras: A generalization of Brauer graph algebras
    Green, Edward L.
    Schroll, Sibylle
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2017, 141 (06): : 539 - 572
  • [10] A criterion on the semisimple Brauer algebras II
    Rui, Hebing
    Si, Mei
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (06) : 1199 - 1203