Bounding the Trellis State Complexity of Algebraic Geometric Codes

被引:0
|
作者
Carlos Munuera
Fernando Torres
机构
[1] University of Valladolid (ETS Arquitectura),Department of Applied Mathematics
[2] Cx. P. 6065,IMECC
[3] Campinas,UNICAMP
来源
Applicable Algebra in Engineering, Communication and Computing | 2004年 / 15卷
关键词
Error correcting codes; Algebraic geometric codes; Trellis state complexity; Gonality sequence of curves;
D O I
暂无
中图分类号
学科分类号
摘要
Let [inline-graphic not available: see fulltext] be an algebraic geometric code of dimension k and length n constructed on a curve [inline-graphic not available: see fulltext] over Fq. Let [inline-graphic not available: see fulltext] be the state complexity of [inline-graphic not available: see fulltext] and [inline-graphic not available: see fulltext] the Wolf upper bound on [inline-graphic not available: see fulltext]. We introduce a numerical function R that depends on the gonality sequence of [inline-graphic not available: see fulltext] and show that [inline-graphic not available: see fulltext] where g is the genus of [inline-graphic not available: see fulltext]. As a matter of fact, R(2g−2)≤g−(γ2−2) with γ2 being the gonality of [inline-graphic not available: see fulltext] over Fq, and thus in particular we have that [inline-graphic not available: see fulltext]
引用
收藏
页码:81 / 100
页数:19
相关论文
共 50 条
  • [41] On the decoding of algebraic-geometric codes
    Hoholdt, T
    Pellikaan, R
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) : 1589 - 1614
  • [42] ON THE CONSTRUCTION OF ALGEBRAIC-GEOMETRIC CODES
    DU Hong
    LIU Zhuojun
    DI Changyan(Institute of Systems Science
    Systems Science and Mathematical Sciences, 2000, (03) : 260 - 261
  • [43] ON THE DECODING OF ALGEBRAIC-GEOMETRIC CODES
    XING, CP
    CHINESE SCIENCE BULLETIN, 1991, 36 (19): : 1598 - 1600
  • [44] Distance bounds for algebraic geometric codes
    Duursma, Iwan
    Kirov, Radoslav
    Park, Seungkook
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (08) : 1863 - 1878
  • [45] Spectra of algebraic-geometric codes
    Katsman, G.L.
    Tsfasman, M.A.
    Problems of information transmission, 1988, 23 (04) : 262 - 275
  • [46] Convolutional Codes Under a Minimal Trellis Complexity Measure
    Uchoa-Filho, Bartolomeu F.
    Souza, Richard Demo
    Pimentel, Cecilio
    Jar, Marcel
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2009, 57 (01) : 1 - 5
  • [47] A COMPARISON OF REDUCED COMPLEXITY DECODING ALGORITHMS FOR TRELLIS CODES
    POTTIE, GJ
    TAYLOR, DP
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 1989, 7 (09) : 1369 - 1380
  • [48] A Computational Complexity Measure for Trellis Modules of Convolutional Codes
    Benchimol, Isaac B.
    Pimentel, Cecilio
    Souza, Richard Demo
    Uchoa-Filho, Bartolomeu F.
    2013 36TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2013, : 144 - 148
  • [49] LOW-COMPLEXITY TRELLIS DECODING OF HAMMING CODES
    HONARY, B
    MARKARIAN, G
    ELECTRONICS LETTERS, 1993, 29 (12) : 1114 - 1116
  • [50] On trellis complexity constrained convolutional codes of maximum length
    Rosnes, E
    Ytrehus, O
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 277 - 277