Bounding the Trellis State Complexity of Algebraic Geometric Codes

被引:0
|
作者
Carlos Munuera
Fernando Torres
机构
[1] University of Valladolid (ETS Arquitectura),Department of Applied Mathematics
[2] Cx. P. 6065,IMECC
[3] Campinas,UNICAMP
来源
Applicable Algebra in Engineering, Communication and Computing | 2004年 / 15卷
关键词
Error correcting codes; Algebraic geometric codes; Trellis state complexity; Gonality sequence of curves;
D O I
暂无
中图分类号
学科分类号
摘要
Let [inline-graphic not available: see fulltext] be an algebraic geometric code of dimension k and length n constructed on a curve [inline-graphic not available: see fulltext] over Fq. Let [inline-graphic not available: see fulltext] be the state complexity of [inline-graphic not available: see fulltext] and [inline-graphic not available: see fulltext] the Wolf upper bound on [inline-graphic not available: see fulltext]. We introduce a numerical function R that depends on the gonality sequence of [inline-graphic not available: see fulltext] and show that [inline-graphic not available: see fulltext] where g is the genus of [inline-graphic not available: see fulltext]. As a matter of fact, R(2g−2)≤g−(γ2−2) with γ2 being the gonality of [inline-graphic not available: see fulltext] over Fq, and thus in particular we have that [inline-graphic not available: see fulltext]
引用
收藏
页码:81 / 100
页数:19
相关论文
共 50 条
  • [31] On the Properties of Algebraic Geometric Codes as Copy Protection Codes
    Deundyak, V. M.
    Zagumennov, D. V.
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2021, 55 (07) : 795 - 808
  • [32] On the Properties of Algebraic Geometric Codes as Copy Protection Codes
    V. M. Deundyak
    D. V. Zagumennov
    Automatic Control and Computer Sciences, 2021, 55 : 795 - 808
  • [33] BCH CODES FROM ALGEBRAIC-GEOMETRIC CODES
    Hu, Wanbao
    Zhang, Junxiao
    Zhang, Wenbing
    He, Rongrong
    INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE & TECHNOLOGY, PROCEEDINGS, 2009, : 198 - 199
  • [34] ON THE DECODING OF ALGEBRAIC-GEOMETRIC CODES
    邢朝平
    Chinese Science Bulletin, 1991, (19) : 1598 - 1600
  • [35] ON THE DECODING OF ALGEBRAIC-GEOMETRIC CODES
    SKOROBOGATOV, AN
    VLADUT, SG
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) : 1051 - 1060
  • [36] Algebraic geometric codes on anticanonical surfaces
    Davis, Jennifer A.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (04) : 496 - 510
  • [37] Coset bounds for algebraic geometric codes
    Duursma, Iwan M.
    Park, Seungkook
    FINITE FIELDS AND THEIR APPLICATIONS, 2010, 16 (01) : 36 - 55
  • [38] A Construction of Algebraic Geometric LDPC Codes
    Xiao, Dongliang
    Li, Huizhen
    Wen, Ke
    Dai, Chaoyang
    2024 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA, ICCC, 2024,
  • [39] WHICH LINEAR CODES ARE ALGEBRAIC GEOMETRIC
    PELLIKAAN, R
    SHEN, BZ
    VANWEE, GJM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (03) : 583 - 602
  • [40] Algebraic geometric codes over rings
    Walker, JL
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 144 (01) : 91 - 110