Bounding the Trellis State Complexity of Algebraic Geometric Codes

被引:0
|
作者
Carlos Munuera
Fernando Torres
机构
[1] University of Valladolid (ETS Arquitectura),Department of Applied Mathematics
[2] Cx. P. 6065,IMECC
[3] Campinas,UNICAMP
来源
Applicable Algebra in Engineering, Communication and Computing | 2004年 / 15卷
关键词
Error correcting codes; Algebraic geometric codes; Trellis state complexity; Gonality sequence of curves;
D O I
暂无
中图分类号
学科分类号
摘要
Let [inline-graphic not available: see fulltext] be an algebraic geometric code of dimension k and length n constructed on a curve [inline-graphic not available: see fulltext] over Fq. Let [inline-graphic not available: see fulltext] be the state complexity of [inline-graphic not available: see fulltext] and [inline-graphic not available: see fulltext] the Wolf upper bound on [inline-graphic not available: see fulltext]. We introduce a numerical function R that depends on the gonality sequence of [inline-graphic not available: see fulltext] and show that [inline-graphic not available: see fulltext] where g is the genus of [inline-graphic not available: see fulltext]. As a matter of fact, R(2g−2)≤g−(γ2−2) with γ2 being the gonality of [inline-graphic not available: see fulltext] over Fq, and thus in particular we have that [inline-graphic not available: see fulltext]
引用
收藏
页码:81 / 100
页数:19
相关论文
共 50 条
  • [1] Bounding the trellis state complexity of algebraic geometric codes
    Munuera, C
    Torres, F
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2004, 15 (02) : 81 - 100
  • [2] A goppa-like bound on the trellis state complexity of algebraic-geometric codes
    Munuera, C
    Torres, F
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (03) : 733 - 737
  • [3] On codes of bounded trellis complexity
    Kashyap, Navin
    2007 IEEE INFORMATION THEORY WORKSHOP, VOLS 1 AND 2, 2007, : 168 - 173
  • [4] Upper bounds on the state complexity of trellis diagrams for turbo codes
    Okamura, T
    GLOBECOM'99: SEAMLESS INTERCONNECTION FOR UNIVERSAL SERVICES, VOL 1-5, 1999, : 2571 - 2575
  • [5] The trellis complexity of convolutional codes
    McEliece, RJ
    Lin, W
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (06) : 1855 - 1864
  • [6] Bounds on the state complexity of geometric Goppa codes
    Blackmore, T
    Norton, GH
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 170 - 170
  • [7] MINIMUM DISTANCE BOUNDING TECHNIQUES FOR INDIVIDUAL TRELLIS CODES
    PORATH, JE
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1995, 43 (2-4) : 691 - 694
  • [8] Trellis complexity of short linear codes
    Bocharova, Irina E.
    Johannesson, Rolf
    Kudryashov, Boris D.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (01) : 361 - 368
  • [9] Alternative Syndrome-Trellis Codes with Reduced Trellis Complexity
    Liu, Wei-Wei
    Liu, Guang-Jie
    Dai, Yue-Wei
    Journal of Information Hiding and Multimedia Signal Processing, 2014, 5 (04): : 769 - 777
  • [10] Lower bounds on the state complexity of geometric Goppa codes
    Blackmore, T
    Norton, GH
    DESIGNS CODES AND CRYPTOGRAPHY, 2002, 25 (01) : 95 - 115