Tight Frame Completions with Prescribed Norms

被引:0
|
作者
P. G. Massey
M. A. Ruiz
机构
[1] Univ. Nac. de La Plata and IAM-CONICET,Dpto. de Matemática
来源
Sampling Theory in Signal and Image Processing | 2008年 / 7卷 / 1期
关键词
frame; tight frame completion; majorization; 42C15;
D O I
10.1007/BF03549482
中图分类号
学科分类号
摘要
Let H be a finite dimensional (real or complex) Hilbert space and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {{a_i}} \right\}_{i = 1}^\infty $$\end{document} be a non-increasing sequence of positive numbers. Given a finite sequence of vectors \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F = \left\{ {{f_i}} \right\}_{i = 1}^p$$\end{document} in H we find necessary and sufficient conditions for the existence of r ∈ ℕ ∪ {∞} and a Bessel sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = \left\{ {{g_i}} \right\}_{i = 1}^r$$\end{document} in H such that F ∪ G is a tight frame for H and ‖gi‖2 = ai for every i. Moreover, in this case we compute the minimum r ∈ ℕ ∪ {∞} with this property. We also describe algorithms that perform completions of a given set of vectors to tight frames.
引用
收藏
页码:2 / 13
页数:11
相关论文
共 50 条
  • [1] Optimal Frame Completions with Prescribed Norms for Majorization
    Massey, Pedro G.
    Ruiz, Mariano A.
    Stojanoff, Demetrio
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2014, 20 (05) : 1111 - 1140
  • [2] Optimal Frame Completions with Prescribed Norms for Majorization
    Pedro G. Massey
    Mariano A. Ruiz
    Demetrio Stojanoff
    Journal of Fourier Analysis and Applications, 2014, 20 : 1111 - 1140
  • [3] Frame completions with prescribed norms: local minimizers and applications
    Pedro G. Massey
    Noelia B. Rios
    Demetrio Stojanoff
    Advances in Computational Mathematics, 2018, 44 : 51 - 86
  • [4] Frame completions with prescribed norms: local minimizers and applications
    Massey, Pedro G.
    Rios, Noelia B.
    Stojanoff, Demetrio
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2018, 44 (01) : 51 - 86
  • [5] Spectra of Frame Operators with Prescribed Frame Norms
    Bownik, Marcin
    Jasper, John
    HARMONIC ANALYSIS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 612 : 65 - +
  • [6] Frame completion with prescribed norms via alternating projection method
    Liu, Hai-Feng
    APPLIED NUMERICAL MATHEMATICS, 2021, 164 : 161 - 174
  • [7] Tight frame wavelets with equal norms highpass and bandpass filters
    Abdelnour, A. Farras
    WAVELETS XII, PTS 1 AND 2, 2007, 6701
  • [8] Optimal frame completions
    Pedro G. Massey
    Mariano A. Ruiz
    Demetrio Stojanoff
    Advances in Computational Mathematics, 2014, 40 : 1011 - 1042
  • [9] Optimal frame completions
    Massey, Pedro G.
    Ruiz, Mariano A.
    Stojanoff, Demetrio
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (5-6) : 1011 - 1042
  • [10] The schur-horn theorem for operators and frames with prescribed norms and frame operator
    Antezana, J.
    Massey, P.
    Ruiz, M.
    Stojanoff, D.
    ILLINOIS JOURNAL OF MATHEMATICS, 2007, 51 (02) : 537 - 560