Demuxafy: improvement in droplet assignment by integrating multiple single-cell demultiplexing and doublet detection methods

被引:7
|
作者
Neavin, Drew [1 ]
Senabouth, Anne [1 ]
Arora, Himanshi [1 ,2 ]
Lee, Jimmy Tsz Hang [3 ]
Ripoll-Cladellas, Aida [4 ]
Franke, Lude [5 ]
Prabhakar, Shyam [6 ,7 ,8 ]
Ye, Chun Jimmie [9 ,10 ,11 ,12 ]
McCarthy, Davis J. [4 ,13 ,14 ]
Mele, Marta [4 ]
Hemberg, Martin [15 ,16 ]
Powell, Joseph E. [1 ,17 ]
机构
[1] Garvan Inst Med Res, Garvan Weizmann Ctr Cellular Genom, Darlinghurst, NSW, Australia
[2] NSW Hlth, Statewide Genom, Pathol, Sydney, NSW, Australia
[3] Wellcome Genome Campus, Wellcome Sanger Inst, Hinxton, England
[4] Barcelona Supercomp Ctr, Life Sci Dept, ,Catalonia, Barcelona, Spain
[5] Univ Groningen, Univ Med Ctr Groningen, Dept Genet, Groningen, Netherlands
[6] ASTAR, Genome Inst Singapore GIS, Spatial & Single Cell Syst Domain, Singapore, Singapore
[7] Nanyang Technol Univ, Lee Kong Chian Sch Med, Populat Global Hlth, Singapore, Singapore
[8] Natl Univ Singapore, Canc Sci Inst Singapore, Singapore, Singapore
[9] Univ Calif San Francisco, Bakar Computat Hlth Sci Inst, San Francisco, CA USA
[10] Univ Calif San Francisco, Inst Human Genet, San Francisco, CA USA
[11] Univ Calif San Francisco, Dept Med, Div Rheumatol, San Francisco, CA USA
[12] Chan Zuckerberg Biohub, San Francisco, CA USA
[13] St Vincents Inst Med Res, Bioinformat & Cellular Genom, Fitzroy, Australia
[14] Univ Melbourne, Fac Sci, Sch Biosci, Sch Math & Stat,Melbourne Integrat Genom, Melbourne, Australia
[15] Brigham & Womens Hosp, Gene Lay Inst Immunol & Inflammat, Boston, MA USA
[16] Harvard Med Sch, Boston, MA USA
[17] Univ New South Wales, UNSW Cellular Genom Futures Inst, Kensington, NSW, Australia
来源
GENOME BIOLOGY | 2024年 / 25卷 / 01期
基金
英国医学研究理事会;
关键词
Single-cell analysis; Genetic demultiplexing; Doublet detecting;
D O I
10.1186/s13059-024-03224-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Recent innovations in single-cell RNA-sequencing (scRNA-seq) provide the technology to investigate biological questions at cellular resolution. Pooling cells from multiple individuals has become a common strategy, and droplets can subsequently be assigned to a specific individual by leveraging their inherent genetic differences. An implicit challenge with scRNA-seq is the occurrence of doublets-droplets containing two or more cells. We develop Demuxafy, a framework to enhance donor assignment and doublet removal through the consensus intersection of multiple demultiplexing and doublet detecting methods. Demuxafy significantly improves droplet assignment by separating singlets from doublets and classifying the correct individual.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Methods for copy number aberration detection from single-cell DNA-sequencing data
    Mallory, Xian F.
    Edrisi, Mohammadamin
    Navin, Nicholas
    Nakhleh, Luay
    GENOME BIOLOGY, 2020, 21 (01)
  • [42] Methods for copy number aberration detection from single-cell DNA-sequencing data
    Xian F. Mallory
    Mohammadamin Edrisi
    Nicholas Navin
    Luay Nakhleh
    Genome Biology, 21
  • [43] Single-Cell RNA Sequencing for the Detection of Clonotypic V(D)J Rearrangements in Multiple Myeloma
    Matera, Antonio
    Marella, Alessio
    Maeda, Akihiro
    Da Via, Matteo C.
    Lazzaroni, Francesca
    Fabris, Sonia
    Pioggia, Stefania
    Porretti, Laura
    Colombo, Federico
    Torricelli, Federica
    Neri, Antonino
    Taiana, Elisa
    Fabbiano, Giuseppina
    Traini, Valentina
    Genuardi, Elisa
    Drandi, Daniela
    Bolli, Niccolo
    Lionetti, Marta
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (24)
  • [44] Label-Free Detection of Multiplexed Metabolites at Single-Cell Level via a SERS-Microfluidic Droplet Platform
    Sun, Dan
    Cao, Fanghao
    Tian, Yu
    Li, Aisen
    Xu, Weiqing
    Chen, Qidan
    Shi, Wei
    Xu, Shuping
    ANALYTICAL CHEMISTRY, 2019, 91 (24) : 15484 - 15490
  • [45] Highly sensitive and quantitative detection of rare pathogens through agarose droplet microfluidic emulsion PCR at the single-cell level
    Zhu, Zhi
    Zhang, Wenhua
    Leng, Xuefei
    Zhang, Mingxia
    Guan, Zhichao
    Lu, Jiangquan
    Yang, Chaoyong James
    LAB ON A CHIP, 2012, 12 (20) : 3907 - 3913
  • [46] Beaconet: A Reference-Free Method for Integrating Multiple Batches of Single-Cell Transcriptomic Data in Original Molecular Space
    Xu, Han
    Ye, Yusen
    Duan, Ran
    Gao, Yong
    Hu, Yuxuan
    Gao, Lin
    ADVANCED SCIENCE, 2024, 11 (26)
  • [47] Systematic comparative analysis of single-nucleotide variant detection methods from single-cell RNA sequencing data
    Fenglin Liu
    Yuanyuan Zhang
    Lei Zhang
    Ziyi Li
    Qiao Fang
    Ranran Gao
    Zemin Zhang
    Genome Biology, 20
  • [48] Systematic comparative analysis of single-nucleotide variant detection methods from single-cell RNA sequencing data
    Liu, Fenglin
    Zhang, Yuanyuan
    Zhang, Lei
    Li, Ziyi
    Fang, Qiao
    Gao, Ranran
    Zhang, Zemin
    GENOME BIOLOGY, 2019, 20 (01)
  • [49] Mutual information for detecting multi-class biomarkers when integrating multiple bulk or single-cell transcriptomic studies
    Zou, Jian
    Li, Zheqi
    Carleton, Neil
    Oesterreich, Steffi
    Lee, Adrian, V
    Tseng, George C.
    BIOINFORMATICS, 2024, 40 (12)
  • [50] Assessing the performance of methods for copy number aberration detection from single-cell DNA sequencing data
    Mallory, Xian F.
    Edrisi, Mohammadamin
    Navin, Nicholas
    Nakhleh, Luay
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (07)