Demuxafy: improvement in droplet assignment by integrating multiple single-cell demultiplexing and doublet detection methods

被引:7
|
作者
Neavin, Drew [1 ]
Senabouth, Anne [1 ]
Arora, Himanshi [1 ,2 ]
Lee, Jimmy Tsz Hang [3 ]
Ripoll-Cladellas, Aida [4 ]
Franke, Lude [5 ]
Prabhakar, Shyam [6 ,7 ,8 ]
Ye, Chun Jimmie [9 ,10 ,11 ,12 ]
McCarthy, Davis J. [4 ,13 ,14 ]
Mele, Marta [4 ]
Hemberg, Martin [15 ,16 ]
Powell, Joseph E. [1 ,17 ]
机构
[1] Garvan Inst Med Res, Garvan Weizmann Ctr Cellular Genom, Darlinghurst, NSW, Australia
[2] NSW Hlth, Statewide Genom, Pathol, Sydney, NSW, Australia
[3] Wellcome Genome Campus, Wellcome Sanger Inst, Hinxton, England
[4] Barcelona Supercomp Ctr, Life Sci Dept, ,Catalonia, Barcelona, Spain
[5] Univ Groningen, Univ Med Ctr Groningen, Dept Genet, Groningen, Netherlands
[6] ASTAR, Genome Inst Singapore GIS, Spatial & Single Cell Syst Domain, Singapore, Singapore
[7] Nanyang Technol Univ, Lee Kong Chian Sch Med, Populat Global Hlth, Singapore, Singapore
[8] Natl Univ Singapore, Canc Sci Inst Singapore, Singapore, Singapore
[9] Univ Calif San Francisco, Bakar Computat Hlth Sci Inst, San Francisco, CA USA
[10] Univ Calif San Francisco, Inst Human Genet, San Francisco, CA USA
[11] Univ Calif San Francisco, Dept Med, Div Rheumatol, San Francisco, CA USA
[12] Chan Zuckerberg Biohub, San Francisco, CA USA
[13] St Vincents Inst Med Res, Bioinformat & Cellular Genom, Fitzroy, Australia
[14] Univ Melbourne, Fac Sci, Sch Biosci, Sch Math & Stat,Melbourne Integrat Genom, Melbourne, Australia
[15] Brigham & Womens Hosp, Gene Lay Inst Immunol & Inflammat, Boston, MA USA
[16] Harvard Med Sch, Boston, MA USA
[17] Univ New South Wales, UNSW Cellular Genom Futures Inst, Kensington, NSW, Australia
来源
GENOME BIOLOGY | 2024年 / 25卷 / 01期
基金
英国医学研究理事会;
关键词
Single-cell analysis; Genetic demultiplexing; Doublet detecting;
D O I
10.1186/s13059-024-03224-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Recent innovations in single-cell RNA-sequencing (scRNA-seq) provide the technology to investigate biological questions at cellular resolution. Pooling cells from multiple individuals has become a common strategy, and droplets can subsequently be assigned to a specific individual by leveraging their inherent genetic differences. An implicit challenge with scRNA-seq is the occurrence of doublets-droplets containing two or more cells. We develop Demuxafy, a framework to enhance donor assignment and doublet removal through the consensus intersection of multiple demultiplexing and doublet detecting methods. Demuxafy significantly improves droplet assignment by separating singlets from doublets and classifying the correct individual.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Evaluation of cell-cell interaction methods by integrating single-cell RNA sequencing data with spatial information
    Zhaoyang Liu
    Dongqing Sun
    Chenfei Wang
    Genome Biology, 23
  • [22] Droplet-based Digital PCR System for Detection of Single-cell Level of Foodborne Pathogens
    Jang, Minjeong
    Jeong, Soon Woo
    Bae, Nam Ho
    Song, Younseong
    Lee, Tae Jae
    Lee, Moon Keun
    Lee, Seok Jae
    Lee, Kyoung G.
    BIOCHIP JOURNAL, 2017, 11 (04) : 329 - 337
  • [23] Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification
    Guo, Song
    Lin, Weikang Nicholas
    Hu, Yuwei
    Sun, Guoyun
    Dinh-Tuan Phan
    Chen, Chia-Hung
    LAB ON A CHIP, 2018, 18 (13) : 1914 - 1920
  • [24] Droplet-based digital PCR system for detection of single-cell level of foodborne pathogens
    Minjeong Jang
    Soon Woo Jeong
    Nam Ho Bae
    Younseong Song
    Tae Jae Lee
    Moon Keun Lee
    Seok Jae Lee
    Kyoung G. Lee
    BioChip Journal, 2017, 11 : 329 - 337
  • [25] SC-JNMF: single-cell clustering integrating multiple quantification methods based on joint non-negative matrix factorization
    Shiga, Mikio
    Seno, Shigeto
    Onizuka, Makoto
    Matsuda, Hideo
    PEERJ, 2021, 9
  • [26] Back to Basics: A Simplified Improvement to Multiple Displacement Amplification for Microbial Single-Cell Genomics
    Sobol, Morgan S.
    Kaster, Anne-Kristin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (05)
  • [27] IMGG: Integrating Multiple Single-Cell Datasets through Connected Graphs and Generative Adversarial Networks
    Wang, Xun
    Zhang, Chaogang
    Zhang, Ying
    Meng, Xiangyu
    Zhang, Zhiyuan
    Shi, Xin
    Song, Tao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (04)
  • [28] Chemical probes and methods for single-cell detection and quantification of epichaperomes in hematologic malignancies
    Merugu, Swathi
    Sharma, Sahil
    Kaner, Justin
    Digwal, Chander
    Sugita, Mayumi
    Joshi, Suhasini
    Taldone, Tony
    Guzman, Monica L.
    Chiosis, Gabriela
    CHEMICAL TOOLS FOR IMAGING, MANIPULATING, AND TRACKING BIOLOGICAL SYSTEMS: DIVERSE METHODS FOR OPTICAL IMAGING AND CONJUGATION, 2020, 639 : 289 - 311
  • [29] Novel Single-Cell Sequencing Methods for Detection of Mosaic Chromosomal Alterations in the Kidneys
    Wang, Gary
    Chen, Xinyi Emilia
    Verma, Amit
    Zhang, Nancy
    Wilson, Parker C.
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2024, 35 (10):
  • [30] Automatic detection of consensus gene clusters across multiple single-cell datasets
    Song, Qianqian
    Su, Jing
    Miller, Lance D.
    Zhang, Wei
    CANCER RESEARCH, 2020, 80 (16)