Demuxafy: improvement in droplet assignment by integrating multiple single-cell demultiplexing and doublet detection methods

被引:7
|
作者
Neavin, Drew [1 ]
Senabouth, Anne [1 ]
Arora, Himanshi [1 ,2 ]
Lee, Jimmy Tsz Hang [3 ]
Ripoll-Cladellas, Aida [4 ]
Franke, Lude [5 ]
Prabhakar, Shyam [6 ,7 ,8 ]
Ye, Chun Jimmie [9 ,10 ,11 ,12 ]
McCarthy, Davis J. [4 ,13 ,14 ]
Mele, Marta [4 ]
Hemberg, Martin [15 ,16 ]
Powell, Joseph E. [1 ,17 ]
机构
[1] Garvan Inst Med Res, Garvan Weizmann Ctr Cellular Genom, Darlinghurst, NSW, Australia
[2] NSW Hlth, Statewide Genom, Pathol, Sydney, NSW, Australia
[3] Wellcome Genome Campus, Wellcome Sanger Inst, Hinxton, England
[4] Barcelona Supercomp Ctr, Life Sci Dept, ,Catalonia, Barcelona, Spain
[5] Univ Groningen, Univ Med Ctr Groningen, Dept Genet, Groningen, Netherlands
[6] ASTAR, Genome Inst Singapore GIS, Spatial & Single Cell Syst Domain, Singapore, Singapore
[7] Nanyang Technol Univ, Lee Kong Chian Sch Med, Populat Global Hlth, Singapore, Singapore
[8] Natl Univ Singapore, Canc Sci Inst Singapore, Singapore, Singapore
[9] Univ Calif San Francisco, Bakar Computat Hlth Sci Inst, San Francisco, CA USA
[10] Univ Calif San Francisco, Inst Human Genet, San Francisco, CA USA
[11] Univ Calif San Francisco, Dept Med, Div Rheumatol, San Francisco, CA USA
[12] Chan Zuckerberg Biohub, San Francisco, CA USA
[13] St Vincents Inst Med Res, Bioinformat & Cellular Genom, Fitzroy, Australia
[14] Univ Melbourne, Fac Sci, Sch Biosci, Sch Math & Stat,Melbourne Integrat Genom, Melbourne, Australia
[15] Brigham & Womens Hosp, Gene Lay Inst Immunol & Inflammat, Boston, MA USA
[16] Harvard Med Sch, Boston, MA USA
[17] Univ New South Wales, UNSW Cellular Genom Futures Inst, Kensington, NSW, Australia
来源
GENOME BIOLOGY | 2024年 / 25卷 / 01期
基金
英国医学研究理事会;
关键词
Single-cell analysis; Genetic demultiplexing; Doublet detecting;
D O I
10.1186/s13059-024-03224-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Recent innovations in single-cell RNA-sequencing (scRNA-seq) provide the technology to investigate biological questions at cellular resolution. Pooling cells from multiple individuals has become a common strategy, and droplets can subsequently be assigned to a specific individual by leveraging their inherent genetic differences. An implicit challenge with scRNA-seq is the occurrence of doublets-droplets containing two or more cells. We develop Demuxafy, a framework to enhance donor assignment and doublet removal through the consensus intersection of multiple demultiplexing and doublet detecting methods. Demuxafy significantly improves droplet assignment by separating singlets from doublets and classifying the correct individual.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Integrating multiple references for single-cell assignment
    Duan, Bin
    Chen, Shaoqi
    Chen, Xiaohan
    Zhu, Chenyu
    Tang, Chen
    Wang, Shuguang
    Gao, Yicheng
    Fu, Shaliu
    Liu, Qi
    NUCLEIC ACIDS RESEARCH, 2021, 49 (14)
  • [2] Benchmarking single-cell hashtag oligo demultiplexing methods
    Howitt, George
    Feng, Yuzhou
    Tobar, Lucas
    Vassiliadis, Dane
    Hickey, Peter
    Dawson, Mark A.
    Ranganathan, Sarath
    Shanthikumar, Shivanthan
    Neeland, Melanie
    Maksimovic, Jovana
    Oshlack, Alicia
    NAR GENOMICS AND BIOINFORMATICS, 2023, 5 (04)
  • [3] Tuning hyperparameters of doublet- detection methods for single-cell RNA sequencing data
    Xi, Nan Miles
    Vasilopoulos, Angelos
    QUANTITATIVE BIOLOGY, 2023, 11 (03) : 297 - 305
  • [4] Benchmarking Computational Doublet-Detection Methods for Single-Cell RNA Sequencing Data
    Xi, Nan Miles
    Li, Jingyi Jessica
    CELL SYSTEMS, 2021, 12 (02) : 176 - +
  • [5] Integrating human single-cell data from multiple sources
    Chenwei Li
    Zedao Liu
    Zemin Zhang
    Quantitative Biology, 2022, 10 (03) : 299 - 300
  • [6] Integrating human single-cell data from multiple sources
    Li, Chenwei
    Liu, Zedao
    Zhang, Zemin
    QUANTITATIVE BIOLOGY, 2022, 10 (03) : 299 - 300
  • [7] Identification of immune cell function in breast cancer by integrating multiple single-cell data
    Zhang, Liyuan
    Qin, Qiyuan
    Xu, Chen
    Zhang, Ningyi
    Zhao, Tianyi
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [8] HIGH-THROUGHPUT SINGLE-CELL PATHOGEN DETECTION ON A DROPLET MICROFLUIDIC PLATFORM
    Rane, Tushar D.
    Zec, Helena
    Puleo, Chris
    Lee, Abraham P.
    Wang, Tza-Huei
    2011 IEEE 24TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS), 2011, : 881 - 884
  • [9] Integrating Multiple Single-Cell RNA Sequencing Datasets Using Adversarial Autoencoders
    Wang, Xun
    Zhang, Chaogang
    Wang, Lulu
    Zheng, Pan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (06)
  • [10] scAnnoX: an R package integrating multiple public tools for single-cell annotation
    Huang, Xiaoqian
    Liu, Ruiqi
    Yang, Shiwei
    Chen, Xiaozhou
    Li, Huamei
    PEERJ, 2024, 12