On the exact reproduction number in SIS epidemic models with vertical transmission

被引:0
|
作者
A. Gómez-Corral
F. Palacios-Rodríguez
M. T. Rodríguez-Bernal
机构
[1] Complutense University of Madrid,Department of Statistics and Operations Research, Faculty of Mathematical Sciences
[2] University of Seville,Department of Statistics and Operations Research, Faculty of Mathematics
来源
关键词
Bi-variate competition process; Reproduction number; SIS epidemic model; Vertical transmission; 60J28 (Applications of continuous-time Markov processes on discrete state spaces); 92D30 (Epidemiology);
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a bi-variate competition process to describe the spread of epidemics of SIS type through both horizontal and vertical transmission. The interest is in the exact reproduction number, Rexact,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R}_{\mathrm{{exact}},0}$$\end{document}, which is seen to be the stochastic version of the well-known basic reproduction number. We characterize the probability distribution function of Rexact,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R}_{\mathrm{{exact}},0}$$\end{document} by decomposing this number into two random contributions allowing us to distinguish between infectious person-to-person contacts and infections of newborns with infective parents. Numerical examples are presented to illustrate our analytical results.
引用
收藏
相关论文
共 50 条
  • [41] PC-Based Sensitivity Analysis of the Basic Reproduction Number of Population and Epidemic Models
    Florian, Francesco
    Vermiglio, Rossana
    CURRENT TRENDS IN DYNAMICAL SYSTEMS IN BIOLOGY AND NATURAL SCIENCES, 2020, 21 : 205 - 222
  • [42] THE BASIC REPRODUCTION NUMBER OF AFRICAN TRYPANOSOMIASIS DISEASE WITH A PERIODIC VECTOR POPULATION AND VERTICAL TRANSMISSION
    Zhao, Jingjing
    Zhu, Meixia
    Xiang, Shu
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2019,
  • [43] The type-reproduction number of sexually transmitted infections through heterosexual and vertical transmission
    Ito, Hiromu
    Yamamoto, Taro
    Morita, Satoru
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [44] SIS and SIR Epidemic Models Under Virtual Dispersal
    Derdei Bichara
    Yun Kang
    Carlos Castillo-Chavez
    Richard Horan
    Charles Perrings
    Bulletin of Mathematical Biology, 2015, 77 : 2004 - 2034
  • [45] SIS and SIR Epidemic Models Under Virtual Dispersal
    Bichara, Derdei
    Kang, Yun
    Castillo-Chavez, Carlos
    Horan, Richard
    Perrings, Charles
    BULLETIN OF MATHEMATICAL BIOLOGY, 2015, 77 (11) : 2004 - 2034
  • [46] The type-reproduction number of sexually transmitted infections through heterosexual and vertical transmission
    Hiromu Ito
    Taro Yamamoto
    Satoru Morita
    Scientific Reports, 9
  • [47] Discrete and continuous SIS epidemic models: A unifying approach
    Chalub, Fabio A. C. C.
    Souza, Max O.
    ECOLOGICAL COMPLEXITY, 2014, 18 : 83 - 95
  • [48] AN APPLICATION OF QUEUING THEORY TO SIS AND SEIS EPIDEMIC MODELS
    Hernandez-Suarez, Carlos M.
    Castillo-Chavez, Carlos
    Montesinos Lopez, Osval
    Hernandez-Cuevas, Karla
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2010, 7 (04) : 809 - 823
  • [49] Global Analysis of two Discrete SIS Epidemic Models
    Zheng, Chongwu
    Zhang, Yajing
    Zhang, Fengqin
    ICMS2009: PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, VOL 5, 2009, : 171 - 175
  • [50] The explicit series solution of SIR and SIS epidemic models
    Khan, Hina
    Mohapatra, Ram N.
    Vajravelu, K.
    Liao, S. J.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (02) : 653 - 669