On the exact reproduction number in SIS epidemic models with vertical transmission

被引:0
|
作者
A. Gómez-Corral
F. Palacios-Rodríguez
M. T. Rodríguez-Bernal
机构
[1] Complutense University of Madrid,Department of Statistics and Operations Research, Faculty of Mathematical Sciences
[2] University of Seville,Department of Statistics and Operations Research, Faculty of Mathematics
来源
关键词
Bi-variate competition process; Reproduction number; SIS epidemic model; Vertical transmission; 60J28 (Applications of continuous-time Markov processes on discrete state spaces); 92D30 (Epidemiology);
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a bi-variate competition process to describe the spread of epidemics of SIS type through both horizontal and vertical transmission. The interest is in the exact reproduction number, Rexact,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R}_{\mathrm{{exact}},0}$$\end{document}, which is seen to be the stochastic version of the well-known basic reproduction number. We characterize the probability distribution function of Rexact,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R}_{\mathrm{{exact}},0}$$\end{document} by decomposing this number into two random contributions allowing us to distinguish between infectious person-to-person contacts and infections of newborns with infective parents. Numerical examples are presented to illustrate our analytical results.
引用
收藏
相关论文
共 50 条
  • [21] Studies on the basic reproduction number in stochastic epidemic models with random perturbations
    Rios-Gutierrez, Andres
    Torres, Soledad
    Arunachalam, Viswanathan
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [22] Studies on the basic reproduction number in stochastic epidemic models with random perturbations
    Andrés Ríos-Gutiérrez
    Soledad Torres
    Viswanathan Arunachalam
    Advances in Difference Equations, 2021
  • [23] Deterministic epidemic models overestimate the basic reproduction number of observed outbreaks
    Ali, Wajid
    Overton, Christopher E.
    Wilkinson, Robert R.
    Sharkey, Kieran J.
    INFECTIOUS DISEASE MODELLING, 2024, 9 (03) : 680 - 688
  • [24] The basic reproduction number in some discrete-time epidemic models
    Allen, Linda J. S.
    van den Driessche, P.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2008, 14 (10-11) : 1127 - 1147
  • [25] Global behaviour in age structured SIS models with seasonal periodicities and vertical transmission
    Langlais, M
    Busenberg, S
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 213 (02) : 511 - 533
  • [26] EXTINCTION AND PERSISTENCE OF A STOCHASTIC SIS EPIDEMIC MODEL WITH VERTICAL TRANSMISSION, SPECIFIC FUNCTIONAL RESPONSE AND LEVY JUMPS
    Naim, Mouhcine
    Lahmidi, Fouad
    Namir, Abdelwahed
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2019,
  • [27] On the Number of Periodic Inspections During Outbreaks of Discrete-Time Stochastic SIS Epidemic Models
    Gamboa, Maria
    Jesus Lopez-Herrero, Maria
    MATHEMATICS, 2018, 6 (08):
  • [28] MONOTONICITY PROPERTIES OF THE SIS AND SIR EPIDEMIC MODELS
    SIEGEL, D
    KUNZE, H
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 185 (01) : 65 - 85
  • [29] Some discrete SI and SIS epidemic models
    李建全
    娄洁
    娄梅枝
    Applied Mathematics and Mechanics(English Edition), 2008, (01) : 113 - 119
  • [30] Some discrete SI and SIS epidemic models
    Li Jian-quan
    Lou Jie
    Lou Mei-zhi
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2008, 29 (01) : 113 - 119