On the exact reproduction number in SIS epidemic models with vertical transmission

被引:0
|
作者
A. Gómez-Corral
F. Palacios-Rodríguez
M. T. Rodríguez-Bernal
机构
[1] Complutense University of Madrid,Department of Statistics and Operations Research, Faculty of Mathematical Sciences
[2] University of Seville,Department of Statistics and Operations Research, Faculty of Mathematics
来源
关键词
Bi-variate competition process; Reproduction number; SIS epidemic model; Vertical transmission; 60J28 (Applications of continuous-time Markov processes on discrete state spaces); 92D30 (Epidemiology);
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a bi-variate competition process to describe the spread of epidemics of SIS type through both horizontal and vertical transmission. The interest is in the exact reproduction number, Rexact,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R}_{\mathrm{{exact}},0}$$\end{document}, which is seen to be the stochastic version of the well-known basic reproduction number. We characterize the probability distribution function of Rexact,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R}_{\mathrm{{exact}},0}$$\end{document} by decomposing this number into two random contributions allowing us to distinguish between infectious person-to-person contacts and infections of newborns with infective parents. Numerical examples are presented to illustrate our analytical results.
引用
收藏
相关论文
共 50 条
  • [1] On the exact reproduction number in SIS epidemic models with vertical transmission
    Gomez-Corral, A.
    Palacios-Rodriguez, F.
    Rodriguez-Bernal, M. T.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (06):
  • [2] DISCRETE TIME SI AND SIS EPIDEMIC MODELS WITH VERTICAL TRANSMISSION
    Zhang, Juping
    Jin, Zhen
    JOURNAL OF BIOLOGICAL SYSTEMS, 2009, 17 (02) : 201 - 212
  • [3] Epidemic models with uncertainty in the reproduction number
    M. G. Roberts
    Journal of Mathematical Biology, 2013, 66 : 1463 - 1474
  • [4] Epidemic models with uncertainty in the reproduction number
    Roberts, M. G.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2013, 66 (07) : 1463 - 1474
  • [5] Qualitative study of a stochastic SIS epidemic model with vertical transmission
    Zhang, Xiao-Bing
    Chang, Suqin
    Shi, Qihong
    Huo, Hai-Feng
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 505 : 805 - 817
  • [6] On the number of recovered individuals in the SIS and SIR stochastic epidemic models
    Artalejo, J. R.
    Economou, A.
    Lopez-Herrero, M. J.
    MATHEMATICAL BIOSCIENCES, 2010, 228 (01) : 45 - 55
  • [7] Improved Bounds on the Epidemic Threshold of Exact SIS Models on Complex Networks
    Ruhi, Navid Azizan
    Thrampoulidis, Christos
    Hassibi, Babak
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 3560 - 3565
  • [8] Chlamydia transmission:: Concurrency, reproduction number, and the epidemic trajectory
    Potterat, JJ
    Zimmerman-Rogers, H
    Muth, SQ
    Rothenberg, RB
    Green, DL
    Taylor, JE
    Bonney, MS
    White, HA
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 1999, 150 (12) : 1331 - 1339
  • [9] Basic reproduction number of epidemic models on sparse networks
    Morita, Satoru
    PHYSICAL REVIEW E, 2022, 106 (03)
  • [10] Type reproduction number for epidemic models on heterogeneous networks
    Morita, Satoru
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 587