Strong gravitational lensing by loop quantum gravity motivated rotating black holes and EHT observations

被引:0
|
作者
Jitendra Kumar
Shafqat Ul Islam
Sushant G. Ghosh
机构
[1] Jamia Millia Islamia,Centre for Theoretical Physics
[2] University of KwaZulu-Natal,Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate gravitational lensing in the strong deflection regime by loop quantum gravity (LQG)-motivated rotating black hole (LMRBH) metrics with an additional parameter l besides mass M and rotation a. The LMRBH spacetimes are regular everywhere, asymptotically encompassing the Kerr black hole as a particular case and, depending on the parameters, describe black holes with one horizon only (BH-I), black holes with an event horizon and a Cauchy horizon (BH-II), black holes with three horizons (BH-III), or black holes with no horizons (NH) spacetime. It turns out that as the LQG parameter l increases, the unstable photon orbit radius xps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{ps}$$\end{document}, the critical impact parameter ups\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{ps}$$\end{document}, the deflection angle αD(θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _D(\theta )$$\end{document} and angular position θ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{\infty }$$\end{document} also increases. Meanwhile, the angular separation s decreases, and relative magnitude rmag\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{mag}$$\end{document} increases with increasing l for prograde motion but they show opposite behaviour for the retrograde motion. Using supermassive black holes (SMBH) Sgr A* and M87* as lenses, we compare the observable signatures of LMRBH with those of Kerr black holes. For Sgr A*, the angular position θ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{\infty }$$\end{document}∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document} (16.4, 39.8) μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}as, while for M87* ∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document} (12.33, 29.9) μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}as. The angular separation s, for SMBHs Sgr A* and M87*, differs significantly, with values ranging ∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document} (0.008–0.376) μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}as for Sgr A* and ∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document} (0.006–0.282) μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}as for M87*. The deviations of the lensing observables Δθ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \theta _{\infty }$$\end{document} and Δs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta s$$\end{document} for LMRBH (a=0.80,l=2.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=0.80,l=2.0$$\end{document}) from Kerr black holes can reach up to 10.22μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10.22\,\upmu $$\end{document}as and 0.241μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.241~\upmu $$\end{document}as for Sgr A*, and 7.683μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7.683~\upmu $$\end{document}as and 0.181μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.181~\upmu $$\end{document}as for M87*. The relative magnitude rmag\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{mag}$$\end{document}∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document} (0.047, 1.54). We estimate the time delay between the first and second relativistic images using twenty supermassive galactic centre black holes as lenses to find, for example, the time delay for Sgr A* and M87* can reach approximately 23.26 min and 33,261.8 min, respectively. Our analysis concludes that, within the 1σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \sigma $$\end{document} region, a significant portion of the BH-I and BH-II parameter space agrees with the EHT results of M87* and Sgr A*. The possibility of LMRBH being a BH-III with three horizons has been almost ruled out, except for a small portion of parameter space, by θsh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{sh}$$\end{document} bounds of Sgr A* and M87* measured by EHT. In contrast, NH without a horizon is completely ruled out. We discover that the EHT results of Sgr A* place more stringent limits on the parameter space of LMRBH black holes than those established by the EHT results of M87*.
引用
下载
收藏
相关论文
共 50 条
  • [31] Quantum black holes in loop quantum gravity
    Gambini, Rodolfo
    Olmedo, Javier
    Pullin, Jorge
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (09)
  • [32] Strong gravitational lensing by regular electrically charged black holes
    Jun Liang
    General Relativity and Gravitation, 2017, 49
  • [33] Strong gravitational lensing by regular electrically charged black holes
    Liang, Jun
    GENERAL RELATIVITY AND GRAVITATION, 2017, 49 (11)
  • [34] Strong field gravitational lensing by hairy Kerr black holes
    Ul Islam, Shafqat
    Ghosh, Sushant G.
    PHYSICAL REVIEW D, 2021, 103 (12)
  • [35] Gravitational lensing by black holes
    Bozza, Valerio
    GENERAL RELATIVITY AND GRAVITATION, 2010, 42 (09) : 2269 - 2300
  • [36] Gravitational lensing by black holes
    Valerio Bozza
    General Relativity and Gravitation, 2010, 42 : 2269 - 2300
  • [37] Testing Horndeski Gravity from EHT Observational Results for Rotating Black Holes
    Afrin, Misba
    Ghosh, Sushant G.
    ASTROPHYSICAL JOURNAL, 2022, 932 (01):
  • [38] Effects of Homogeneous Plasma on Strong Gravitational Lensing of Kerr Black Holes
    刘长青
    丁持坤
    荆继良
    Chinese Physics Letters, 2017, 34 (09) : 30 - 34
  • [39] Effects of Homogeneous Plasma on Strong Gravitational Lensing of Kerr Black Holes
    Liu, Chang-Qing
    Ding, Chi-Kun
    Jing, Ji-Liang
    CHINESE PHYSICS LETTERS, 2017, 34 (09)
  • [40] Strong gravitational lensing by Kerr and Kerr-Newman black holes
    Hsieh, Tien
    Lee, Da-Shin
    Lin, Chi-Yong
    PHYSICAL REVIEW D, 2021, 103 (10)