Strong gravitational lensing by loop quantum gravity motivated rotating black holes and EHT observations

被引:0
|
作者
Jitendra Kumar
Shafqat Ul Islam
Sushant G. Ghosh
机构
[1] Jamia Millia Islamia,Centre for Theoretical Physics
[2] University of KwaZulu-Natal,Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate gravitational lensing in the strong deflection regime by loop quantum gravity (LQG)-motivated rotating black hole (LMRBH) metrics with an additional parameter l besides mass M and rotation a. The LMRBH spacetimes are regular everywhere, asymptotically encompassing the Kerr black hole as a particular case and, depending on the parameters, describe black holes with one horizon only (BH-I), black holes with an event horizon and a Cauchy horizon (BH-II), black holes with three horizons (BH-III), or black holes with no horizons (NH) spacetime. It turns out that as the LQG parameter l increases, the unstable photon orbit radius xps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{ps}$$\end{document}, the critical impact parameter ups\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{ps}$$\end{document}, the deflection angle αD(θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _D(\theta )$$\end{document} and angular position θ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{\infty }$$\end{document} also increases. Meanwhile, the angular separation s decreases, and relative magnitude rmag\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{mag}$$\end{document} increases with increasing l for prograde motion but they show opposite behaviour for the retrograde motion. Using supermassive black holes (SMBH) Sgr A* and M87* as lenses, we compare the observable signatures of LMRBH with those of Kerr black holes. For Sgr A*, the angular position θ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{\infty }$$\end{document}∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document} (16.4, 39.8) μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}as, while for M87* ∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document} (12.33, 29.9) μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}as. The angular separation s, for SMBHs Sgr A* and M87*, differs significantly, with values ranging ∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document} (0.008–0.376) μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}as for Sgr A* and ∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document} (0.006–0.282) μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}as for M87*. The deviations of the lensing observables Δθ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \theta _{\infty }$$\end{document} and Δs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta s$$\end{document} for LMRBH (a=0.80,l=2.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=0.80,l=2.0$$\end{document}) from Kerr black holes can reach up to 10.22μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10.22\,\upmu $$\end{document}as and 0.241μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.241~\upmu $$\end{document}as for Sgr A*, and 7.683μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7.683~\upmu $$\end{document}as and 0.181μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.181~\upmu $$\end{document}as for M87*. The relative magnitude rmag\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{mag}$$\end{document}∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document} (0.047, 1.54). We estimate the time delay between the first and second relativistic images using twenty supermassive galactic centre black holes as lenses to find, for example, the time delay for Sgr A* and M87* can reach approximately 23.26 min and 33,261.8 min, respectively. Our analysis concludes that, within the 1σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \sigma $$\end{document} region, a significant portion of the BH-I and BH-II parameter space agrees with the EHT results of M87* and Sgr A*. The possibility of LMRBH being a BH-III with three horizons has been almost ruled out, except for a small portion of parameter space, by θsh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{sh}$$\end{document} bounds of Sgr A* and M87* measured by EHT. In contrast, NH without a horizon is completely ruled out. We discover that the EHT results of Sgr A* place more stringent limits on the parameter space of LMRBH black holes than those established by the EHT results of M87*.
引用
下载
收藏
相关论文
共 50 条
  • [21] Strong gravitational lensing: Why no central black holes?
    Chen, D.-M. (cdm@class1.bao.ac.cn), 1600, EDP Sciences (397):
  • [22] Strong gravitational lensing: Why no central black holes?
    Chen, DM
    ASTRONOMY & ASTROPHYSICS, 2003, 397 (02) : 415 - 420
  • [23] Strong gravitational lensing, quasi-periodic oscillations and constraints from EHT observations for quantum-improved charged black hole
    Molla, Niyaz Uddin
    Chaudhary, Himanshu
    Mustafa, G.
    Debnath, Ujjal
    Maurya, S. K.
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (04):
  • [24] Probing effective loop quantum gravity on weak gravitational lensing, Hawking radiation and bounding greybody factor by black holes
    Wajiha Javed
    Mehak Atique
    Ali Övgün
    General Relativity and Gravitation, 2022, 54
  • [25] Probing effective loop quantum gravity on weak gravitational lensing, Hawking radiation and bounding greybody factor by black holes
    Javed, Wajiha
    Atique, Mehak
    Ovgun, Ali
    GENERAL RELATIVITY AND GRAVITATION, 2022, 54 (10)
  • [26] Constraining a modified gravity theory in strong gravitational lensing and black hole shadow observations
    Kuang, Xiao-Mei
    Tang, Zi-Yu
    Wang, Bin
    Wang, Anzhong
    PHYSICAL REVIEW D, 2022, 106 (06)
  • [27] Gravitational lensing by rotating Simpson-Visser black holes
    Ghosh, Sushant G.
    Ul Islam, Shafqat
    SIXTEENTH MARCEL GROSSMANN MEETING, 2023, : 3812 - 3826
  • [28] Strong gravitational lensing by Bardeen black holes in 4D EGB gravity: Constraints from supermassive black holes
    Ul Islam, Shafqat
    Ghosh, Sushant G.
    Maharaj, Sunil D.
    CHINESE JOURNAL OF PHYSICS, 2024, 89 : 1710 - 1724
  • [29] Strong gravitational lensing by Bardeen black holes in 4D EGB gravity: Constraints from supermassive black holes
    Ul Islam, Shafqat
    Ghosh, Sushant G.
    Maharaj, Sunil D.
    CHINESE JOURNAL OF PHYSICS, 2024, 89 : 1710 - 1724
  • [30] Black holes in loop quantum gravity
    Perez, Alejandro
    REPORTS ON PROGRESS IN PHYSICS, 2017, 80 (12)