Global regularity for a class of Monge-Ampère type equations

被引:0
|
作者
Mengni Li
You Li
机构
[1] Tsinghua University,Department of Mathematical Sciences
[2] Tsinghua University,Yau Mathematical Sciences Center
来源
Science China Mathematics | 2022年 / 65卷
关键词
Dirichlet problem; Monge-Ampère type equation; Hölder estimate; 35J60; 35B65; 53A15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we are concerned with the global regularity of solutions to the Dirichlet problem for a class of Monge-Ampère type equations. By employing the concept of (a, η) type domain, we emphasize that the boundary regularity depends on the convexity of the domain in nature. The key idea of our proof is to provide more effective global Hölder estimates of convex solutions to the problem based on carefully choosing auxiliary functions and constructing sub-solutions.
引用
收藏
页码:501 / 516
页数:15
相关论文
共 50 条
  • [31] Stability estimates for the complex Monge-Ampère and Hessian equations
    Bin Guo
    Duong H. Phong
    Freid Tong
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [32] Contact linearization of Monge-Ampére equations and Laplace invariants
    A. G. Kushner
    Doklady Mathematics, 2008, 78 : 751 - 754
  • [33] A Liouville theorem for the Neumann problem of Monge-Amp?re equations
    Jian, Huaiyu
    Tu, Xushan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 284 (06)
  • [34] Global regularity for a class of Monge-Ampere type equations
    Li, Mengni
    Li, You
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (03) : 501 - 516
  • [35] Singular Monge-Ampère foliations
    Tom Duchamp
    Morris Kalka
    Mathematische Annalen, 2003, 325 : 187 - 209
  • [36] The global dirichlet problem for the complex Monge-Ampère equation
    Urban Cegrell
    Sławomir Kołodziej
    The Journal of Geometric Analysis, 1999, 9 (1): : 41 - 49
  • [37] Pseudo transient continuation and time marching methods for Monge-Ampère type equations
    Gerard Awanou
    Advances in Computational Mathematics, 2015, 41 : 907 - 935
  • [38] A property for the Monge-Ampère equation
    Daniele Puglisi
    Israel Journal of Mathematics, 2020, 236 : 959 - 965
  • [39] A SINGULAR DIRICHLET PROBLEM FOR THE MONGE-AMPÈRE TYPE EQUATION
    Zhang, Zhijun
    Zhang, Bo
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (05) : 1965 - 1983
  • [40] Regularity of the degenerate Monge-Ampère equation on compact Kähler manifolds
    Z. Blocki
    Mathematische Zeitschrift, 2003, 244 : 153 - 161