Global regularity for a class of Monge-Ampère type equations

被引:0
|
作者
Mengni Li
You Li
机构
[1] Tsinghua University,Department of Mathematical Sciences
[2] Tsinghua University,Yau Mathematical Sciences Center
来源
Science China Mathematics | 2022年 / 65卷
关键词
Dirichlet problem; Monge-Ampère type equation; Hölder estimate; 35J60; 35B65; 53A15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we are concerned with the global regularity of solutions to the Dirichlet problem for a class of Monge-Ampère type equations. By employing the concept of (a, η) type domain, we emphasize that the boundary regularity depends on the convexity of the domain in nature. The key idea of our proof is to provide more effective global Hölder estimates of convex solutions to the problem based on carefully choosing auxiliary functions and constructing sub-solutions.
引用
收藏
页码:501 / 516
页数:15
相关论文
共 50 条
  • [21] Analyticity of the solutions to degenerate Monge-Ampère equations
    Huang, Genggeng
    Lue, Yingshu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 376 : 633 - 654
  • [22] COMPLEX MONGE-AMPěRE EQUATIONS ON GENERAL DOMAINS
    Wang Weiof Math.
    Applied Mathematics:A Journal of Chinese Universities, 2001, (03) : 268 - 278
  • [23] Symmetry of solutions to parabolic Monge-Ampère equations
    Limei Dai
    Boundary Value Problems, 2013
  • [24] ON A CLASS OF DEGENERATE AND SINGULAR MONGE-AMP`ERE EQUATIONS
    JIAN, H. U. A. I. Y. U.
    LI, Y. O. U.
    TU, X. U. S. H. A. N.
    METHODS AND APPLICATIONS OF ANALYSIS, 2021, 28 (03) : 371 - 386
  • [25] A variational approach to complex Monge-Ampère equations
    Robert J. Berman
    Sébastien Boucksom
    Vincent Guedj
    Ahmed Zeriahi
    Publications mathématiques de l'IHÉS, 2013, 117 : 179 - 245
  • [26] Complex monge-ampère equations on general domains
    Wang W.
    Applied Mathematics-A Journal of Chinese Universities, 2001, 16 (3) : 268 - 278
  • [27] Comparison results for Monge-Ampère type equations with lower order terms
    Brandolini B.
    Nonlinear Differential Equations and Applications NoDEA, 2003, 10 : 455 - 468
  • [28] Sobolev regularity for the infinite-dimensional Monge-Ampère equation
    V. I. Bogachev
    A. V. Kolesnikov
    Doklady Mathematics, 2012, 85 : 331 - 335
  • [29] A complex parabolic type Monge-Ampère equation
    Spiliotis J.
    Applied Mathematics and Optimization, 1997, 35 (3): : 265 - 282
  • [30] Existence of convex solutions for systems of Monge-Ampère equations
    Min Gao
    Fanglei Wang
    Boundary Value Problems, 2015