Inverse Scale Space Iterations for Non-Convex Variational Problems: The Continuous and Discrete Case

被引:0
|
作者
Danielle Bednarski
Jan Lellmann
机构
[1] University of Lübeck,Institute of Mathematics and Image Computing
关键词
Functional lifting; Bregman iteration; Scale space; Inverse scale space flow;
D O I
暂无
中图分类号
学科分类号
摘要
Nonlinear filtering approaches allow to obtain decomposition of images with respect to a non-classical notion of scale, induced by the choice of a convex, absolutely one-homogeneous regularizer. The associated inverse scale space flow can be obtained using the classical Bregman iteration with quadratic data term. We apply the Bregman iteration to lifted, i.e., higher-dimensional and convex, functionals in order to extend the scope of these approaches to functionals with arbitrary data term. We provide conditions for the subgradients of the regularizer – in the continuous and discrete setting– under which this lifted iteration reduces to the standard Bregman iteration. We show experimental results for the convex and non-convex case.
引用
收藏
页码:124 / 139
页数:15
相关论文
共 50 条
  • [1] Inverse Scale Space Iterations for Non-Convex Variational Problems: The Continuous and Discrete Case
    Bednarski, Danielle
    Lellmann, Jan
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2023, 65 (01) : 124 - 139
  • [2] Duality for non-convex variational problems
    Bouchitte, Guy
    Fragala, Ilaria
    [J]. COMPTES RENDUS MATHEMATIQUE, 2015, 353 (04) : 375 - 379
  • [3] On radial solutions to non-convex variational problems
    FloresBazan, F
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 1996, 22 (01): : 161 - 181
  • [4] Exact relaxations of non-convex variational problems
    Meziat, Rene
    Patino, Diego
    [J]. OPTIMIZATION LETTERS, 2008, 2 (04) : 505 - 519
  • [5] Exact relaxations of non-convex variational problems
    René Meziat
    Diego Patiño
    [J]. Optimization Letters, 2008, 2 : 505 - 519
  • [6] On the numerical analysis of non-convex variational problems
    Pedregal, P
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 203 - 206
  • [7] A duality recipe for non-convex variational problems
    Bouchitte, Guy
    Minh Phan
    [J]. COMPTES RENDUS MECANIQUE, 2018, 346 (03): : 206 - 221
  • [8] On the numerical analysis of non-convex variational problems
    Pedregal, P
    [J]. NUMERISCHE MATHEMATIK, 1996, 74 (03) : 325 - 336
  • [9] A non-convex PDE scale space
    Grasmair, M
    Lenzen, F
    Obereder, A
    Scherzer, O
    Fuchs, M
    [J]. SCALE SPACE AND PDE METHODS IN COMPUTER VISION, PROCEEDINGS, 2005, 3459 : 303 - 315
  • [10] η-Approximation Method for Non-convex Multiobjective Variational Problems
    Antczak, Tadeusz
    Michalak, Anna
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (09) : 1125 - 1142