Exact relaxations of non-convex variational problems

被引:5
|
作者
Meziat, Rene [1 ]
Patino, Diego [1 ]
机构
[1] Univ Los Andes, Dept Matemat, Bogota, Colombia
关键词
Calculus of variations; Convex analysis; Semidefinite programming; Multidimensional moment problem;
D O I
10.1007/s11590-008-0077-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Here, we solve non-convex, variational problems given in the form min(u) I (u) = integral(1)(0) f (u' (x))dx s.t. u(0) = 0, u(1) = a, (1) where u is an element of (W-1,W-infinity(0,1))(k) and f : R-k -> R is a non-convex, coercive polynomial. To solve ( 1) we analyse the convex hull of the integrand at the point a, so that we can find vectors a(1),...,a(N) is an element of R-k and positive values lambda(1),...,lambda(N) satisfying the non-linear equation (1, a, f(c)(a)) = Sigma(N)(i=1)lambda(i)(1, a(i), f(a(i))). (2) Thus, we can calculate minimizers of (1) by following a proposal of Dacorogna in (Direct Methods in the Calculus of Variations. Springer, Heidelberg, 1989). Indeed, we can solve (2) by using a semidefinite program based on multidimensional moments.
引用
收藏
页码:505 / 519
页数:15
相关论文
共 50 条