A non-convex PDE scale space

被引:0
|
作者
Grasmair, M
Lenzen, F
Obereder, A
Scherzer, O
Fuchs, M
机构
[1] Univ Innsbruck, Dept Comp Sci, A-6020 Innsbruck, Austria
[2] Mathconsult Gmbh, Math Competence Ctr, A-4040 Linz, Austria
关键词
morphological regularization; diffusion filtering; equivalence relations;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For image filtering applications, it has been observed recently that both diffusion filtering and associated regularization models provide similar filtering properties. The comparison has been performed for regularization functionals with convex penalization functional. In this paper we discuss,the relation between non-convex regularization functionals and associated time dependent diffusion filtering techniques (in particular the Mean Curvature Flow equation). Here, the general idea is to approximate an evolution process by a sequence of minimizers of iteratively convexified energy (regularization) functionals.
引用
收藏
页码:303 / 315
页数:13
相关论文
共 50 条
  • [1] Discrete dynamics for convex and non-convex smoothing functionals in PDE based image restoration
    Elliott, CM
    Gawron, B
    Maier-Paape, S
    Van Vleck, ES
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (01) : 181 - 200
  • [2] Inverse Scale Space Iterations for Non-Convex Variational Problems: The Continuous and Discrete Case
    Bednarski, Danielle
    Lellmann, Jan
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2023, 65 (01) : 124 - 139
  • [3] Inverse Scale Space Iterations for Non-Convex Variational Problems: The Continuous and Discrete Case
    Danielle Bednarski
    Jan Lellmann
    [J]. Journal of Mathematical Imaging and Vision, 2023, 65 : 124 - 139
  • [4] Edge Detection in Segmented Non-convex Space Polygon
    Kozar, I.
    Lozzi-Kozar, D.
    Jericevic, Z.
    [J]. 2014 37TH INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2014, : 402 - 405
  • [5] NON-CONVEX SWEEPING PROCESSES IN THE SPACE OF REGULATED FUNCTIONS
    Krejci, Pavel
    Monteiro, Giselle Antunes
    Recupero, Vincenzo
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (09) : 2999 - 3029
  • [6] Estimating scale economies in non-convex production models
    Cesaroni, Giovanni
    Kerstens, Kristiaan
    Van de Woestyne, Ignace
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2017, 68 (11) : 1442 - 1451
  • [7] On the critical points of solutions of PDE in non-convex settings: The case of concentrating solutions
    Gladiali, F.
    Grossi, M.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (11)
  • [8] NON-CONVEX DUALITY
    EKELAND, I
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1979, MEM (60): : 45 - 55
  • [9] DUALITY FOR A NON-CONVEX PROGRAM IN A REAL BANACH-SPACE
    BECTOR, CR
    BHATT, SK
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1977, 57 (03): : 193 - 194
  • [10] Convex and Non-convex Flow Surfaces
    Bolchoun, A.
    Kolupaev, V. A.
    Altenbach, H.
    [J]. FORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCH, 2011, 75 (02): : 73 - 92