A non-convex PDE scale space

被引:0
|
作者
Grasmair, M
Lenzen, F
Obereder, A
Scherzer, O
Fuchs, M
机构
[1] Univ Innsbruck, Dept Comp Sci, A-6020 Innsbruck, Austria
[2] Mathconsult Gmbh, Math Competence Ctr, A-4040 Linz, Austria
关键词
morphological regularization; diffusion filtering; equivalence relations;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For image filtering applications, it has been observed recently that both diffusion filtering and associated regularization models provide similar filtering properties. The comparison has been performed for regularization functionals with convex penalization functional. In this paper we discuss,the relation between non-convex regularization functionals and associated time dependent diffusion filtering techniques (in particular the Mean Curvature Flow equation). Here, the general idea is to approximate an evolution process by a sequence of minimizers of iteratively convexified energy (regularization) functionals.
引用
收藏
页码:303 / 315
页数:13
相关论文
共 50 条
  • [41] Non-convex sparse regularisation
    Grasmair, Markus
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (01) : 19 - 28
  • [42] Evolution by Non-Convex Functionals
    Elbau, Peter
    Grasmair, Markus
    Lenzen, Frank
    Scherzer, Otmar
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (04) : 489 - 517
  • [43] COVARIOGRAM OF NON-CONVEX SETS
    Benassi, Carlo
    Bianchi, Gabriele
    D'Ercole, Giuliana
    [J]. MATHEMATIKA, 2010, 56 (02) : 267 - 284
  • [44] Non-convex CMC spheres
    Ma, Shiguang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (02) : 1180 - 1195
  • [45] DUALITY IN NON-CONVEX OPTIMIZATION
    TOLAND, JF
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 66 (02) : 399 - 415
  • [46] Non-Convex Multipartite Ferromagnets
    Genovese, Giuseppe
    Tantari, Daniele
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2016, 163 (03) : 492 - 513
  • [47] A new accelerating method for global non-convex quadratic optimization with non-convex quadratic constraints
    Wu, Huizhuo
    Zhang, KeCun
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (02) : 810 - 818
  • [48] Big and beautiful? On non-parametrically measuring scale economies in non-convex technologies
    Kristof De Witte
    Rui C. Marques
    [J]. Journal of Productivity Analysis, 2011, 35 : 213 - 226
  • [49] Big and beautiful? On non-parametrically measuring scale economies in non-convex technologies
    De Witte, Kristof
    Marques, Rui C.
    [J]. JOURNAL OF PRODUCTIVITY ANALYSIS, 2011, 35 (03) : 213 - 226
  • [50] Convex and Non-convex Optimization Under Generalized Smoothness
    Li, Haochuan
    Qian, Jian
    Tian, Yi
    Rakhlin, Alexander
    Jadbabaie, Ali
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,