Lp-Poincaré inequality for general symmetric forms

被引:0
|
作者
Yong Hua Mao
机构
[1] Beijing Normal University,School of Mathematical Science, LMCS, Ministing of Education
关键词
Poincaré inequality; symmetric form; isoperimetric constant; compact embedding; concentration; 60J75; 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
Lp Poincaré inequalities for general symmetric forms are established by new Cheeger’s isoperimetric constants. Lp super-Poincaré inequalities are introduced to describe the equivalent conditions for the Lp compact embedding, and the criteria via the new Cheeger’s constants for those inequalities are presented. Finally, the concentration or the volume growth of measures for these inequalities are studied.
引用
收藏
页码:2055 / 2064
页数:9
相关论文
共 50 条
  • [21] Nash inequalities for general symmetric forms
    Mufa Chen
    Acta Mathematica Sinica, 1999, 15 : 353 - 370
  • [22] On a Hardy Type General Weighted Inequality in Spaces Lp(·)
    Farman I. Mamedov
    Aziz Harman
    Integral Equations and Operator Theory, 2010, 66 : 565 - 592
  • [23] On a Hardy Type General Weighted Inequality in Spaces Lp(.)
    Mamedov, Farman I.
    Harman, Aziz
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 66 (04) : 565 - 592
  • [24] A general HELP inequality connected with symmetric operators
    Langer, M
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2066): : 587 - 606
  • [25] A Remark on the Steklov–Poincaré Inequality
    Sh. M. Nasibov
    Mathematical Notes, 2021, 110 : 221 - 225
  • [26] Geometric Implications of the Poincaré Inequality
    Riikka Korte
    Results in Mathematics, 2007, 50 : 93 - 107
  • [27] Poincaré Inequality on Subanalytic Sets
    Anna Valette
    Guillaume Valette
    The Journal of Geometric Analysis, 2021, 31 : 10464 - 10472
  • [28] On extension and refinement of the Poincaré inequality
    Abdellatif Bentaleb
    Saïd Fahlaoui
    Ali Hafidi
    Archiv der Mathematik, 2013, 100 : 63 - 74
  • [29] On validity conditions for the Poincaré inequality
    Nazarov A.I.
    Poborchi S.V.
    Journal of Mathematical Sciences, 2013, 195 (1) : 61 - 63
  • [30] On a kinetic Poincaré inequality and beyond
    Niebel, Lukas
    Zacher, Rico
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 289 (01)