On extension and refinement of the Poincaré inequality

被引:0
|
作者
Abdellatif Bentaleb
Saïd Fahlaoui
Ali Hafidi
机构
[1] University Moulay Ismaïl,Équipe d’Analyse Harmonique et Probabilités, Department of Mathematics and Computer Sciences, Faculty of Sciences
来源
Archiv der Mathematik | 2013年 / 100卷
关键词
Primary 60J60; 42A99; Secondary 46E35; 60J25; Ornstein–Uhlenbeck semigroup; Heat semigroup; Spectral gap; Local Poincaré inequality; Reverse local Poincaré inequality;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to analyze the heat semigroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\mathcal{N}_{t})_{t >0 } = \{e^{t \Delta}\}_{t >0 }}$$\end{document} generated by the usual Laplacian operator Δ on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{d}}$$\end{document} equipped with the d-dimensional Lebesgue measure. We obtain and study, via a method involving some semigroup techniques, a large family of functional inequalities that does not exist in the literature and with the local Poincaré and reverse local Poincaré inequalities as particular cases. As a consequence, we establish in parallel a new functional and integral inequality related to the Ornstein–Uhlenbeck semigroup.
引用
收藏
页码:63 / 74
页数:11
相关论文
共 50 条
  • [1] On extension and refinement of the Poincare inequality
    Bentaleb, Abdellatif
    Fahlaoui, Said
    Hafidi, Ali
    ARCHIV DER MATHEMATIK, 2013, 100 (01) : 63 - 74
  • [2] ON EXTENSION AND REFINEMENT OF WILKER'S INEQUALITY
    Wu, Shanhe
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (02) : 683 - 687
  • [3] p-Poincaré inequality versus ∞-Poincaré inequality: some counterexamples
    Estibalitz Durand-Cartagena
    Nageswari Shanmugalingam
    Alex Williams
    Mathematische Zeitschrift, 2012, 271 : 447 - 467
  • [4] On an Extension and a Refinement of Van der Corput's Inequality
    YANG Bi-cheng (Department of Mathematics
    Chinese Quarterly Journal of Mathematics, 2007, (01) : 94 - 98
  • [5] A refinement of the Poincaré inequality for Kolmogorov operators on[inline-graphic not available: see fulltext]
    Yasuhiro Fujita
    Journal of Inequalities and Applications, 2005
  • [6] An extension and refinement of Hermite-Hadamard inequality and related results
    Zabandan, G.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2020, 11 (02): : 379 - 390
  • [7] A Remark on the Steklov–Poincaré Inequality
    Sh. M. Nasibov
    Mathematical Notes, 2021, 110 : 221 - 225
  • [8] Geometric Implications of the Poincaré Inequality
    Riikka Korte
    Results in Mathematics, 2007, 50 : 93 - 107
  • [9] Poincaré Inequality on Subanalytic Sets
    Anna Valette
    Guillaume Valette
    The Journal of Geometric Analysis, 2021, 31 : 10464 - 10472
  • [10] On validity conditions for the Poincaré inequality
    Nazarov A.I.
    Poborchi S.V.
    Journal of Mathematical Sciences, 2013, 195 (1) : 61 - 63