On extension and refinement of the Poincaré inequality

被引:0
|
作者
Abdellatif Bentaleb
Saïd Fahlaoui
Ali Hafidi
机构
[1] University Moulay Ismaïl,Équipe d’Analyse Harmonique et Probabilités, Department of Mathematics and Computer Sciences, Faculty of Sciences
来源
Archiv der Mathematik | 2013年 / 100卷
关键词
Primary 60J60; 42A99; Secondary 46E35; 60J25; Ornstein–Uhlenbeck semigroup; Heat semigroup; Spectral gap; Local Poincaré inequality; Reverse local Poincaré inequality;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to analyze the heat semigroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\mathcal{N}_{t})_{t >0 } = \{e^{t \Delta}\}_{t >0 }}$$\end{document} generated by the usual Laplacian operator Δ on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{d}}$$\end{document} equipped with the d-dimensional Lebesgue measure. We obtain and study, via a method involving some semigroup techniques, a large family of functional inequalities that does not exist in the literature and with the local Poincaré and reverse local Poincaré inequalities as particular cases. As a consequence, we establish in parallel a new functional and integral inequality related to the Ornstein–Uhlenbeck semigroup.
引用
收藏
页码:63 / 74
页数:11
相关论文
共 50 条
  • [41] Refinement of Holder inequality and application to Ostrowski inequality
    Yang, XJ
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 138 (2-3) : 455 - 461
  • [42] The Poincar, inequality for C 1,α-smooth vector fields
    Basalaev, S. G.
    SIBERIAN MATHEMATICAL JOURNAL, 2014, 55 (02) : 215 - 229
  • [43] On homeomorphisms with a fixed point onto domains with a Poincaré inequality
    Dovhopiatyi O.P.
    Sevost’yanov E.O.
    Journal of Mathematical Sciences, 2024, 282 (1) : 28 - 43
  • [44] Type extension and refinement
    Bancroft, P
    Hayes, I
    FORMAL METHODS PACIFIC '97, 1997, : 23 - 39
  • [45] Extension of refinement rings
    Bahmani Sangesari, Rahman
    Sheibani Abdolyousefi, Marjan
    Ashrafi, Nahid
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (01) : 71 - 79
  • [46] PHASE EXTENSION AND REFINEMENT
    OLTHOF, GJ
    SINT, L
    SCHENK, H
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1979, 35 (NOV): : 941 - 946
  • [47] Exploring the statistical applicability of the Poincar, inequality: a test of normality
    Goia, Aldo
    Salinelli, Ernesto
    Sarda, Pascal
    TEST, 2011, 20 (02) : 334 - 352
  • [48] Poincaré Inequality on the Path Space of Poisson Point Processes
    Feng-Yu Wang
    Chenggui Yuan
    Journal of Theoretical Probability, 2010, 23 : 824 - 833
  • [49] Integral representations and the generalized Poincaré inequality on Carnot groups
    E. A. Plotnikova
    Siberian Mathematical Journal, 2008, 49 : 339 - 352
  • [50] Best constant in a three-parameter Poincaré inequality
    Gerasimov I.V.
    Nazarov A.I.
    Journal of Mathematical Sciences, 2011, 179 (1) : 80 - 99