On the convergence of successive Galerkin approximation for nonlinear output feedback H∞ control

被引:0
|
作者
Henrique C. Ferreira
Paulo H. Rocha
Roberto M. Sales
机构
[1] University of Brasília,Department of Electrical Engineering
[2] Brazilian Navy Technology Center,Electro
[3] University of São Paulo,Electronic Project Division
来源
Nonlinear Dynamics | 2010年 / 60卷
关键词
 control; Output feedback; Galerkin method;
D O I
暂无
中图分类号
学科分类号
摘要
Although the formulation of the nonlinear theory of H∞ control has been well developed, solving the Hamilton–Jacobi–Isaacs equation remains a challenge and is the major bottleneck for practical application of the theory. Several numerical methods have been proposed for its solution. In this paper, results on convergence and stability for a successive Galerkin approximation approach for nonlinear H∞ control via output feedback are presented. An example is presented illustrating the application of the algorithm.
引用
收藏
页码:651 / 660
页数:9
相关论文
共 50 条
  • [31] Output Feedback Nonlinear H∞ Control of Wheeled Mobile Robots Formation
    Francisco, Tatiane B. R.
    Terra, Marco H.
    Siqueira, Adriano A. G.
    2008 MEDITERRANEAN CONFERENCE ON CONTROL AUTOMATION, VOLS 1-4, 2008, : 1632 - +
  • [32] Switching Fuzzy Dynamic Output Feedback H∞ Control for Nonlinear Systems
    Yang, Guang-Hong
    Dong, Jiuxiang
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (02): : 505 - 516
  • [33] Nonlinear Robust H∞ Control via a Stable Decentralized Nonlinear Output Feedback Controller
    Harno, Hendra G.
    Petersen, Ian R.
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 1638 - 1644
  • [34] Adaptive output-feedback control for mimo nonlinear systems based on Fuzzy approximation
    Wang, Honghong
    Chen, Bing
    Lin, Chong
    Sun, Yumei
    Wang, Fang
    ICIC Express Letters, 2016, 10 (12): : 3009 - 3016
  • [35] On nonlinear Galerkin approximation
    Wang, BX
    Shi, K
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1997, 15 (01) : 23 - 35
  • [36] ON NONLINEAR GALERKIN APPROXIMATION
    B.X. Wang (Institute of Applied Physics and Computational Mathematics
    Journal of Computational Mathematics, 1997, (01) : 23 - 35
  • [37] Suboptimal control for nonlinear systems: a successive approximation approach
    Tang, GY
    SYSTEMS & CONTROL LETTERS, 2005, 54 (05) : 429 - 434
  • [38] Parallel robust H∞ control for weakly coupled bilinear systems with parameter uncertainties using successive Galerkin approximation
    Kim, Young-Joong
    Lim, Myo-Taeg
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2006, 4 (06) : 689 - 696
  • [39] Output-Feedback Control for Nonlinear Stochastic Systems With Successive Packet Dropouts and Uniform Quantization Effects
    Sheng, Li
    Wang, Zidong
    Wang, Weibo
    Alsaadi, Fuad E.
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (07): : 1181 - 1191
  • [40] Composite control for singularly perturbed bilinear systems via successive Galerkin approximation
    Kim, YJ
    Kim, BS
    Lim, MT
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2003, 150 (05): : 483 - 488