Solvability of the cohomological equation for regular vector fields on the plane

被引:0
|
作者
Roberto De Leo
机构
[1] Università di Cagliari,Dipartimento di Matematica
[2] Cittadella Universitaria,INFN, Sezione di Cagliari
来源
关键词
Cohomological equation; Foliations of the plane; Hamiltonian vector fields on the plane; Linear first-order PDEs; Primary: 37J99; 53C12; 35F05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider planar vector fields without zeroes ξ and study the image of the associated Lie derivative operators Lξ acting on the space of smooth functions. We show that the cokernel of Lξ is infinite-dimensional as soon as ξ is not topologically conjugate to a constant vector field and that, if the topology of the integral trajectories of ξ is “simple enough” (e.g. if ξ is polynomial) then ξ is transversal to a Hamiltonian foliation. We use this fact to find a large explicit subalgebra of the image of Lξ and to build an embedding of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{2}}$$\end{document} into \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{4}}$$\end{document} which rectifies ξ. Finally, we use this embedding to characterize the functions in the image of Lξ.
引用
收藏
页码:231 / 248
页数:17
相关论文
共 50 条
  • [1] Solvability of the cohomological equation for regular vector fields on the plane
    De Leo, Roberto
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2011, 39 (03) : 231 - 248
  • [2] Weak Solutions of the Cohomological Equation on R2 for Regular Vector Fields
    De Leo, Roberto
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2015, 18 (01)
  • [3] Global Solvability in Functional Spaces for Smooth Nonsingular Vector Fields in the Plane
    DeLeo, Roberto
    Gramchev, Todor
    Kirilov, Alexandre
    PSEUDO-DIFFERENTIAL OPERATORS: ANALYSIS, APPLICATIONS AND COMPUTATIONS, 2011, 213 : 191 - 210
  • [4] TOPOLOGICAL INVARIANCE OF THE SOLVABILITY OF COMPLEX-VALUED VECTOR-FIELDS IN THE PLANE
    MEZIANI, A
    DUKE MATHEMATICAL JOURNAL, 1993, 71 (02) : 609 - 628
  • [5] Lagrangian cohomological couplings among vector fields and matter fields
    Bizdadea, C
    Cioroianu, EM
    Miauta, MT
    Negru, I
    Saliu, SO
    ANNALEN DER PHYSIK, 2001, 10 (11-12) : 921 - 933
  • [6] Lagrangian cohomological couplings among vector fields and matter fields
    Bizdadea, C.
    Cioroianu, E.M.
    MiautǍ, M.T.
    Negru, I.
    Saliu, S.O.
    Annalen der Physik (Leipzig), 2001, 10 (11-12): : 921 - 933
  • [7] On the solvability and hypoellipticity of complex vector fields
    Treves, Francois
    GEOMETRIC ANALYSIS OF SEVERAL COMPLEX VARIABLES AND RELATED TOPICS, 2011, 550 : 173 - 196
  • [9] ON THE SOLVABILITY OF VECTOR FIELDS WITH REAL LINEAR COEFFICIENTS
    Treves, Francois
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (12) : 4209 - 4218
  • [10] Solvability in the large for a class of vector fields on the torus
    Bergamasco, A. R.
    da Silva, P. L. Dattori
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (05): : 427 - 447