Weak Solutions of the Cohomological Equation on R2 for Regular Vector Fields

被引:0
|
作者
De Leo, Roberto [1 ,2 ]
机构
[1] Howard Univ, Dept Math, Washington, DC 20059 USA
[2] Ist Nazl Fis Nucl, Sez Cagliari, Monserrato, Italy
关键词
Cohomological equation; Linear first-order PDEs; Weak solutions;
D O I
10.1007/s11040-015-9187-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a recent article (De Leo, R., Ann. Glob. Anal. Geom., 39, 3, 231-248 2011), we studied the global solvability of the so-called cohomological equation L(xi)f = g in C-infinity(R-2), where xi is a regular vector field on the plane and L-xi the corresponding Lie derivative operator. In a joint article with T. Gramchev and A. Kirilov (2011), we studied the existence of global L-loc(1) weak solutions of the cohomological equation for planar vector fields depending only on one coordinate. Here we generalize the results of both articles by providing explicit conditions for the existence of global weak solutions to the cohomological equation when xi is intrinsically Hamiltonian or of finite type.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Solvability of the cohomological equation for regular vector fields on the plane
    Roberto De Leo
    Annals of Global Analysis and Geometry, 2011, 39 : 231 - 248
  • [2] Solvability of the cohomological equation for regular vector fields on the plane
    De Leo, Roberto
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2011, 39 (03) : 231 - 248
  • [3] Generic complex vector fields in R2
    Le, Anbo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) : 11 - 19
  • [4] Vector fields in R2 with maximal index
    Nabarro, A. C.
    Ruas, M. A. S.
    QUARTERLY JOURNAL OF MATHEMATICS, 2007, 58 : 81 - 90
  • [5] Stochastic vorticity equation in R2 with not regular noise
    Ferrario, Benedetta
    Zanella, Margherita
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2018, 25 (06):
  • [6] Concentrating solutions for the Henon equation in R2
    Esposito, Pierpaolo
    Pistoia, Angela
    Wei, Juncheng
    JOURNAL D ANALYSE MATHEMATIQUE, 2006, 100 (1): : 249 - 280
  • [7] Bounded polynomial vector fields in R2 and Rn
    Barreira, Luis
    Llibre, Jaume
    Valls, Claudia
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (08) : 4416 - 4422
  • [8] Injectivity of C1 maps R2→R2 at infinity and planar vector fields
    Gutierrez, C
    Sarmiento, A
    ASTERISQUE, 2003, (287) : 89 - 102
  • [9] Existence of singular solutions of a degenerate equation in R2
    Shu-Yu Hsu
    Mathematische Annalen, 2006, 334 : 153 - 197
  • [10] Existence of singular solutions of a degenerate equation in R2
    Hsu, SY
    MATHEMATISCHE ANNALEN, 2006, 334 (01) : 153 - 197