Solvability of the cohomological equation for regular vector fields on the plane

被引:0
|
作者
Roberto De Leo
机构
[1] Università di Cagliari,Dipartimento di Matematica
[2] Cittadella Universitaria,INFN, Sezione di Cagliari
来源
关键词
Cohomological equation; Foliations of the plane; Hamiltonian vector fields on the plane; Linear first-order PDEs; Primary: 37J99; 53C12; 35F05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider planar vector fields without zeroes ξ and study the image of the associated Lie derivative operators Lξ acting on the space of smooth functions. We show that the cokernel of Lξ is infinite-dimensional as soon as ξ is not topologically conjugate to a constant vector field and that, if the topology of the integral trajectories of ξ is “simple enough” (e.g. if ξ is polynomial) then ξ is transversal to a Hamiltonian foliation. We use this fact to find a large explicit subalgebra of the image of Lξ and to build an embedding of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{2}}$$\end{document} into \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{4}}$$\end{document} which rectifies ξ. Finally, we use this embedding to characterize the functions in the image of Lξ.
引用
收藏
页码:231 / 248
页数:17
相关论文
共 50 条