A Characterization of Lie Algebras of Skew-Symmetric Elements

被引:0
|
作者
A. N. Grishkov
I. P. Shestakov
机构
[1] Universidade de São Paulo,Departamento de Matemática
[2] Universidade de São Paulo and Sobolev Institute of Mathematics,Departamento de Matemática
来源
关键词
Lie algebra; Jordan triple systems; Lie–Jordan algebra; skew-symmetric elements;
D O I
暂无
中图分类号
学科分类号
摘要
A characterization of Lie algebras of skew-symmetric elements of associative algebras with involution is obtained. It is proved that a Lie algebra L is isomorphic to a Lie algebra of skew-symmetric elements of an associative algebra with involution if and only if L admits an additional (Jordan) trilinear operation {x,y,z} that satisfies the identities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x,y,z\}=\{z,y,x\},$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[[x,y],z]=\{x,y,z\}-\{y,x,z\},$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\{x,y,z\},t]=\{[x,t],y,z\}+\{x,[y,t],z\}+\{x,y,[z,t]\},$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\{x,y,z\},t,v\}=\{\{x,t,v\},y,z\}-\{x,\{y,v,t\},z\}+\{x,y,\{z,t,v\}\},$$\end{document} where [x,y] stands for the multiplication in L.
引用
收藏
页码:157 / 159
页数:2
相关论文
共 50 条
  • [41] DECOMPOSABLE SKEW-SYMMETRIC FUNCTIONS
    Duzhin, S.
    MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (03) : 881 - 888
  • [42] On skew-symmetric differentiation matrices
    Iserles, Arieh
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (02) : 435 - 451
  • [43] Skew-symmetric tensor decomposition
    Arrondo, Enrique
    Bernardi, Alessandra
    Marques, Pedro Macias
    Mourrain, Bernard
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (02)
  • [44] Skew-symmetric identities of octonions
    Shestakov, Ivan
    Zhukavets, Natalia
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (04) : 479 - 492
  • [45] SKEW-SYMMETRIC MATRICES AND THE PFAFFIAN
    EGECIOGLU, O
    ARS COMBINATORIA, 1990, 29 : 107 - 116
  • [46] SKEW-SYMMETRIC OPERATORS AND REFLEXIVITY
    Benhida, Chafiq
    Klis-Garlicka, Kamila
    Ptak, Marek
    MATHEMATICA SLOVACA, 2018, 68 (02) : 415 - 420
  • [47] Almost skew-symmetric matrices
    McDonald, JJ
    Psarrakos, PJ
    Tsatsomeros, MJ
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (01) : 269 - 288
  • [48] A Skew-Symmetric Determinant of Sines
    Omarjee, Moubinool
    AMERICAN MATHEMATICAL MONTHLY, 2023, 130 (09): : 870 - 870
  • [49] Multivariate skew-symmetric distributions
    Gupta, AK
    Chang, FC
    APPLIED MATHEMATICS LETTERS, 2003, 16 (05) : 643 - 646
  • [50] PFAFFIANS AND SKEW-SYMMETRIC MATRICES
    HEYMANS, P
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1969, 19 : 730 - &