A Characterization of Lie Algebras of Skew-Symmetric Elements

被引:0
|
作者
A. N. Grishkov
I. P. Shestakov
机构
[1] Universidade de São Paulo,Departamento de Matemática
[2] Universidade de São Paulo and Sobolev Institute of Mathematics,Departamento de Matemática
来源
关键词
Lie algebra; Jordan triple systems; Lie–Jordan algebra; skew-symmetric elements;
D O I
暂无
中图分类号
学科分类号
摘要
A characterization of Lie algebras of skew-symmetric elements of associative algebras with involution is obtained. It is proved that a Lie algebra L is isomorphic to a Lie algebra of skew-symmetric elements of an associative algebra with involution if and only if L admits an additional (Jordan) trilinear operation {x,y,z} that satisfies the identities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x,y,z\}=\{z,y,x\},$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[[x,y],z]=\{x,y,z\}-\{y,x,z\},$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\{x,y,z\},t]=\{[x,t],y,z\}+\{x,[y,t],z\}+\{x,y,[z,t]\},$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\{x,y,z\},t,v\}=\{\{x,t,v\},y,z\}-\{x,\{y,v,t\},z\}+\{x,y,\{z,t,v\}\},$$\end{document} where [x,y] stands for the multiplication in L.
引用
收藏
页码:157 / 159
页数:2
相关论文
共 50 条
  • [21] Positivity of denominator vectors of skew-symmetric cluster algebras
    Cao, Peigen
    Li, Fang
    JOURNAL OF ALGEBRA, 2018, 515 : 448 - 455
  • [22] ANTI-COMMUTATIVE ALGEBRAS WITH SKEW-SYMMETRIC IDENTITIES
    Dzhumadil'Daev, A. S.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2009, 8 (02) : 157 - 180
  • [24] The Automorphism Group of the Lie Ring of Real Skew-Symmetric Matrices
    Xu, Jinli
    Zheng, Baodong
    Yang, Li
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [25] ORIENTED INVOLUTIONS AND SKEW-SYMMETRIC ELEMENTS IN GROUP RINGS
    Goodaire, Edgar G.
    Milies, Cesar Polcino
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (01)
  • [26] Skew-symmetric Elements in Nonlinear Involutions in Group Rings
    Raposo, A. P.
    ALGEBRA COLLOQUIUM, 2015, 22 (02) : 321 - 332
  • [27] On Symmetric and Skew-Symmetric Operators
    Benhida, Chafiq
    Cho, Muneo
    Ko, Eungil
    Lee, Ji Eun
    FILOMAT, 2018, 32 (01) : 293 - 303
  • [28] Linear independence of cluster monomials for skew-symmetric cluster algebras
    Irelli, Giovanni Cerulli
    Keller, Bernhard
    Labardini-Fragoso, Daniel
    Plamondon, Pierre-Guy
    COMPOSITIO MATHEMATICA, 2013, 149 (10) : 1753 - 1764
  • [29] On skew-symmetric games
    Hao, Yaqi
    Cheng, Daizhan
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2018, 355 (06): : 3196 - 3220
  • [30] Lie Identities on Skew Elements in Group Algebras
    Lee, Gregory T.
    Sehgal, Sudarshan K.
    Spinelli, Ernesto
    LIE ALGEBRAS AND RELATED TOPICS, 2015, 652 : 103 - 121