A Characterization of Lie Algebras of Skew-Symmetric Elements

被引:0
|
作者
A. N. Grishkov
I. P. Shestakov
机构
[1] Universidade de São Paulo,Departamento de Matemática
[2] Universidade de São Paulo and Sobolev Institute of Mathematics,Departamento de Matemática
来源
关键词
Lie algebra; Jordan triple systems; Lie–Jordan algebra; skew-symmetric elements;
D O I
暂无
中图分类号
学科分类号
摘要
A characterization of Lie algebras of skew-symmetric elements of associative algebras with involution is obtained. It is proved that a Lie algebra L is isomorphic to a Lie algebra of skew-symmetric elements of an associative algebra with involution if and only if L admits an additional (Jordan) trilinear operation {x,y,z} that satisfies the identities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x,y,z\}=\{z,y,x\},$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[[x,y],z]=\{x,y,z\}-\{y,x,z\},$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\{x,y,z\},t]=\{[x,t],y,z\}+\{x,[y,t],z\}+\{x,y,[z,t]\},$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\{x,y,z\},t,v\}=\{\{x,t,v\},y,z\}-\{x,\{y,v,t\},z\}+\{x,y,\{z,t,v\}\},$$\end{document} where [x,y] stands for the multiplication in L.
引用
收藏
页码:157 / 159
页数:2
相关论文
共 50 条