On the geometry of orthonormal frame bundles II

被引:0
|
作者
Oldřich Kowalski
Masami Sekizawa
机构
[1] Charles University in Prague,Faculty of Mathematics and Physics
[2] Tokyo Gakugei University,Department of Mathematics
来源
关键词
Riemannian manifold; Homogeneous space; Orthonormal frame bundle; Einstein space; Ricci curvature; Scalar curvature; 53C07; 53C20; 53C21; 53C40;
D O I
暂无
中图分类号
学科分类号
摘要
We study the geometry of orthonormal frame bundles OM over Riemannian manifolds (M, g). The former are equipped with some modifications \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde g_c$$\end{document} of the Sasaki-Mok metric \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde g$$\end{document} depending on one real parameter c  ≠  0. The metrics \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde g_c$$\end{document} are “strongly invariant” in some special sense. In particular, we consider the case when (M, g) is a space of constant sectional curvature K. Then, for dim M  >  2, we find always, among the metrics \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde g_c$$\end{document} , two strongly invariant Einstein metrics on OM which are Riemannian for K  >  0 and pseudo-Riemannian for K  <  0. At least one of them is not locally symmetric. We also find, for dim M  ≥  2, two invariant metrics with vanishing scalar curvature.
引用
收藏
页码:357 / 371
页数:14
相关论文
共 50 条
  • [21] A Characterization of Generalized Frame MRAs Deriving Orthonormal Wavelets
    Zhi Hua ZHANG Department of Mathematics
    Acta Mathematica Sinica(English Series), 2006, 22 (04) : 1251 - 1260
  • [22] The geometry of determinant line bundles in noncommutative geometry
    Chakraborty, Partha Sarathi
    Mathai, Varghese
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2009, 3 (04) : 559 - 578
  • [23] A characterization of generalized frame MRAs deriving orthonormal wavelets
    Zhang, Zhi Hua
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (04) : 1251 - 1260
  • [24] Chern's orthonormal frame bundle of a Finsler space
    Spiro, A
    HOUSTON JOURNAL OF MATHEMATICS, 1999, 25 (04): : 641 - 659
  • [25] Surfaces of Orthonormal Frame Bundle with Wagner Lift Metric
    E. S. Becerra
    M. Malakhaltsev
    Haimer A. Trejos
    Lobachevskii Journal of Mathematics, 2022, 43 : 35 - 48
  • [26] A Characterization of Generalized Frame MRAs Deriving Orthonormal Wavelets
    Zhi Hua Zhang
    Acta Mathematica Sinica, 2006, 22 : 1251 - 1260
  • [27] Surfaces of Orthonormal Frame Bundle with Wagner Lift Metric
    Becerra, E. S.
    Malakhaltsev, M.
    Trejos, Haimer A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (01) : 35 - 48
  • [28] The classic of geometry vector bundles
    Tyurin, A
    ALGEBRAIC GEOMETRY, 1997, 193 : 347 - 378
  • [29] ON THE GEOMETRY OF VERTICAL WEIL BUNDLES
    Kolar, Ivan
    ARCHIVUM MATHEMATICUM, 2014, 50 (05): : 317 - 322
  • [30] HIGGS BUNDLES AND SYZ GEOMETRY
    Heller, Sebastian
    Ouyang, Charles
    Pedit, Franz
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 128 (02) : 773 - 814