We study the geometry of orthonormal frame bundles OM over Riemannian manifolds (M, g). The former are equipped with some modifications \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tilde g_c$$\end{document} of the Sasaki-Mok metric \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tilde g$$\end{document} depending on one real parameter c ≠ 0. The metrics \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tilde g_c$$\end{document} are “strongly invariant” in some special sense. In particular, we consider the case when (M, g) is a space of constant sectional curvature K. Then, for dim M > 2, we find always, among the metrics \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tilde g_c$$\end{document} , two strongly invariant Einstein metrics on OM which are Riemannian for K > 0 and pseudo-Riemannian for K < 0. At least one of them is not locally symmetric. We also find, for dim M ≥ 2, two invariant metrics with vanishing scalar curvature.