On the geometry of orthonormal frame bundles II

被引:0
|
作者
Oldřich Kowalski
Masami Sekizawa
机构
[1] Charles University in Prague,Faculty of Mathematics and Physics
[2] Tokyo Gakugei University,Department of Mathematics
来源
关键词
Riemannian manifold; Homogeneous space; Orthonormal frame bundle; Einstein space; Ricci curvature; Scalar curvature; 53C07; 53C20; 53C21; 53C40;
D O I
暂无
中图分类号
学科分类号
摘要
We study the geometry of orthonormal frame bundles OM over Riemannian manifolds (M, g). The former are equipped with some modifications \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde g_c$$\end{document} of the Sasaki-Mok metric \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde g$$\end{document} depending on one real parameter c  ≠  0. The metrics \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde g_c$$\end{document} are “strongly invariant” in some special sense. In particular, we consider the case when (M, g) is a space of constant sectional curvature K. Then, for dim M  >  2, we find always, among the metrics \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde g_c$$\end{document} , two strongly invariant Einstein metrics on OM which are Riemannian for K  >  0 and pseudo-Riemannian for K  <  0. At least one of them is not locally symmetric. We also find, for dim M  ≥  2, two invariant metrics with vanishing scalar curvature.
引用
收藏
页码:357 / 371
页数:14
相关论文
共 50 条
  • [1] On the geometry of orthonormal frame bundles II
    Kowalski, Oldrich
    Sekizawa, Masami
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2008, 33 (04) : 357 - 371
  • [2] On Riemannian geometry of orthonormal frame bundles
    Sekizawa, Masami
    NOTE DI MATEMATICA, 2008, 28 : 383 - 394
  • [3] ISOMETRY GROUPS OF ORTHONORMAL FRAME BUNDLES
    FISHER, RJ
    LEE, KB
    GEOMETRIAE DEDICATA, 1986, 21 (02) : 181 - 186
  • [4] ON THE GEOMETRY OF FRAME BUNDLES
    Niedzialomski, Kamil
    ARCHIVUM MATHEMATICUM, 2012, 48 (03): : 197 - 206
  • [5] DIFFERENTIAL GEOMETRY OF FRAME BUNDLES OF RIEMANNIAN MANIFOLDS
    MOK, KP
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1978, 302 : 16 - 31
  • [6] Clifford Bundles: A Common Framework for Image, Vector Field, and Orthonormal Frame Field Regularization
    Batard, Thomas
    SIAM JOURNAL ON IMAGING SCIENCES, 2010, 3 (03): : 670 - 701
  • [7] EQUIVARIANT SYMPLECTIC GEOMETRY OF COTANGENT BUNDLES, II
    Timashev, D. A.
    MOSCOW MATHEMATICAL JOURNAL, 2006, 6 (02) : 389 - 404
  • [8] On the geometry of tangent bundles with the metric II plus III
    Gezer, A.
    Tarakci, O.
    Salimov, A. A.
    ANNALES POLONICI MATHEMATICI, 2010, 97 (01) : 73 - 85
  • [9] Sasakian geometry on sphere bundles II: Constant scalar curvature
    Boyer, Charles P.
    Tonnesen-Friedman, Christina W.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2024, 96
  • [10] Martingales on frame bundles
    Catuogno, Pedro
    Stelmastchuk, Simao
    POTENTIAL ANALYSIS, 2008, 28 (01) : 61 - 69