Kernel based local matching network for video object segmentation

被引:0
|
作者
Guoqiang Wang
Lan Li
Min Zhu
Rui Zhao
Xiang Zhang
机构
[1] Sichuan University,
[2] University of Electronic Science and Technology of China,undefined
[3] Shenzhen Polytechnic University,undefined
来源
关键词
Video object segmentation; Sapce-time memory network; Kernel guidance;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, the methods based on space-time memory network have achieved advanced performance in semi-supervised video object segmentation, which has attracted wide attention. However, this kind of methods still have a fatal limitation. It has the interference problem of similar objects caused by the way of non-local matching, which seriously limits the performance of video object segmentation. To solve this problem, we propose a Kernel-guided Attention Matching Network (KAMNet) by the use of local matching instead of non-local matching. At first, KAMNet uses spatio-temporal attention mechanism to enhance the model’s discrimination between foreground objects and background areas. Then KAMNet utilizes gaussian kernel to guide the matching between the current frame and the reference set. Because the gaussian kernel decays away from the center, it can limit the matching to the central region, thus achieving local matching. Our KAMNet gets speed-accuracy trade-off on benchmark datasets DAVIS 2016 (J&F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {J \& F}$$\end{document} of 87.6%) and DAVIS 2017 (J&F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {J \& F}$$\end{document} of 76.0%) with 0.12 second per frame.
引用
收藏
相关论文
共 50 条
  • [1] Kernel based local matching network for video object segmentation
    Wang, Guoqiang
    Li, Lan
    Zhu, Min
    Zhao, Rui
    Zhang, Xiang
    MACHINE VISION AND APPLICATIONS, 2024, 35 (03)
  • [2] Hierarchical Memory Matching Network for Video Object Segmentation
    Seong, Hongje
    Oh, Seoung Wug
    Lee, Joon-Young
    Lee, Seongwon
    Lee, Suhyeon
    Kim, Euntai
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 12869 - 12878
  • [3] Automatic kernel width selection for neural network based video object segmentation
    Culibrk, Dubravko
    Socek, Daniel
    Marques, Oge
    Furht, Borko
    VISAPP 2007: PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOLUME IU/MTSV, 2007, : 472 - +
  • [4] VideoMatch: Matching Based Video Object Segmentation
    Hu, Yuan-Ting
    Huang, Jia-Bin
    Schwing, Alexander G.
    COMPUTER VISION - ECCV 2018, PT VIII, 2018, 11212 : 56 - 73
  • [5] Automatic segmentation of video object plane based on object tracking and matching
    Shi, L
    Zhang, ZY
    Wang, H
    IMAGE EXTRACTION, SEGMENTATION, AND RECOGNITION, 2001, 4550 : 28 - 33
  • [6] Automatic segmentation of video object plane based on object tracking and matching
    Shi, L
    Zhang, ZY
    An, P
    PROCEEDINGS OF 2001 INTERNATIONAL SYMPOSIUM ON INTELLIGENT MULTIMEDIA, VIDEO AND SPEECH PROCESSING, 2001, : 510 - 513
  • [7] COMatchNet: Co-Attention Matching Network for Video Object Segmentation
    Huang, Lufei
    Sun, Fengming
    Yuan, Xia
    PATTERN RECOGNITION, ACPR 2021, PT I, 2022, 13188 : 271 - 284
  • [8] Fast Video Object Segmentation with Temporal Aggregation Network and Dynamic Template Matching
    Huang, Xuhua
    Xu, Jiarui
    Tai, Yu-Wing
    Tang, Chi-Keung
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 8876 - 8886
  • [9] Prototypical Matching Networks for Video Object Segmentation
    Lin, Fanchao
    Qiu, Zhaofan
    Liu, Chuanbin
    Yao, Ting
    Xie, Hongtao
    Zhang, Yongdong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 5623 - 5636
  • [10] Object tracking in video pictures based on image segmentation and pattern matching
    Morimoto, T
    Kiriyama, O
    Harada, Y
    Adachi, H
    Koide, T
    Mattausch, HJ
    2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 3215 - 3218