Bayesian social aggregation with non-Archimedean utilities and probabilities

被引:0
|
作者
Marcus Pivato
Élise Flore Tchouante
机构
[1] THEMA,
[2] CY Cergy Paris Université,undefined
来源
Economic Theory | 2024年 / 77卷
关键词
Utilitarian; Uncertainty; Non-Archimedean; Lexicographic; Infinitesimal; Linearly ordered abelian group; Subjective expected utility; D70; D81;
D O I
暂无
中图分类号
学科分类号
摘要
We consider social decisions under uncertainty. Given certain richness conditions, we show that the ex ante social preference order satisfies a Pareto axiom with respect to ex ante individual preferences, along with an axiom of Statewise Dominance, if and only if all agents admit subjective expected utility (SEU) representations with the same beliefs, and furthermore the social preferences are utilitarian (i.e. the social utility function is the sum of the individual utility functions). In these SEU representations, the utility functions take values in an ordered abelian group, and probabilities are represented by order-preserving automorphisms of this group. This group may be non-Archimedean; this allows the SEU representations to encode lexicographical preferences and/or infinitesimal probabilities. Relative to earlier results in Bayesian social aggregation, our framework is minimal, with a finite set of states of nature, no structure on the set of social outcomes, and preferences not assumed to be continuous.
引用
收藏
页码:561 / 595
页数:34
相关论文
共 50 条
  • [41] A non-Archimedean inner product
    Narici, L
    Beckenstein, E
    Ultrametric Functional Analysis, 2005, 384 : 187 - 202
  • [42] A counterexample on non-archimedean regularity
    N. De Grande-De Kimpe
    C. Perez-Garcia
    Monatshefte für Mathematik, 2008, 153 : 105 - 113
  • [43] NON-ARCHIMEDEAN INTEGRATION THEORY
    VANROOIJ, AC
    SCHIKHOF, WH
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1969, 72 (02): : 190 - &
  • [44] On non-archimedean Gurarii spaces
    Kakol, J.
    Kubis, W.
    Kubzdela, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (02) : 969 - 981
  • [45] Non-Archimedean fuzzy reasoning
    Schumann, Andrew
    FOURTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 1, PROCEEDINGS, 2007, : 2 - 6
  • [46] Non-archimedean shift operators
    Anatoly N. Kochubei
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2010, 2 (3) : 260 - 264
  • [47] NON-ARCHIMEDEAN CHEBYSHEV CENTERS
    MARTINEZMAURICA, J
    PELLON, MT
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1987, 90 (04): : 417 - 421
  • [48] NON-ARCHIMEDEAN FUNCTION ALGEBRAS
    VANDERPUT, M
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1971, 74 (01): : 60 - +
  • [49] NON-ARCHIMEDEAN MEASURE AND INTEGRATION
    SHILKRET.N
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (06): : 967 - &
  • [50] TRIANGULATING NON-ARCHIMEDEAN PROBABILITY
    Brickhill, Hazel
    Horsten, Leon
    REVIEW OF SYMBOLIC LOGIC, 2018, 11 (03): : 519 - 546