Bayesian social aggregation with non-Archimedean utilities and probabilities

被引:0
|
作者
Marcus Pivato
Élise Flore Tchouante
机构
[1] THEMA,
[2] CY Cergy Paris Université,undefined
来源
Economic Theory | 2024年 / 77卷
关键词
Utilitarian; Uncertainty; Non-Archimedean; Lexicographic; Infinitesimal; Linearly ordered abelian group; Subjective expected utility; D70; D81;
D O I
暂无
中图分类号
学科分类号
摘要
We consider social decisions under uncertainty. Given certain richness conditions, we show that the ex ante social preference order satisfies a Pareto axiom with respect to ex ante individual preferences, along with an axiom of Statewise Dominance, if and only if all agents admit subjective expected utility (SEU) representations with the same beliefs, and furthermore the social preferences are utilitarian (i.e. the social utility function is the sum of the individual utility functions). In these SEU representations, the utility functions take values in an ordered abelian group, and probabilities are represented by order-preserving automorphisms of this group. This group may be non-Archimedean; this allows the SEU representations to encode lexicographical preferences and/or infinitesimal probabilities. Relative to earlier results in Bayesian social aggregation, our framework is minimal, with a finite set of states of nature, no structure on the set of social outcomes, and preferences not assumed to be continuous.
引用
收藏
页码:561 / 595
页数:34
相关论文
共 50 条
  • [21] Differentiability of non-archimedean volumes and non-archimedean Monge-Ampere equations
    Burgos Gil, Jose Ignacio
    Gubler, Walter
    Jell, Philipp
    Kuennemann, Klaus
    Martin, Florent
    Lazarsfeld, Robert
    ALGEBRAIC GEOMETRY, 2020, 7 (02): : 113 - 152
  • [22] Discriminants of polynomials in the Archimedean and non-Archimedean metrics
    V. Bernik
    N. Budarina
    H. O’Donnell
    Acta Mathematica Hungarica, 2018, 154 : 265 - 278
  • [23] Discriminants of polynomials in the Archimedean and non-Archimedean metrics
    Bernik, V.
    Budarina, N.
    O'Donnell, H.
    ACTA MATHEMATICA HUNGARICA, 2018, 154 (02) : 265 - 278
  • [24] On Topological Extensions of Archimedean and non-Archimedean Rings
    Khrennikov, Andrei Yu
    van der Walt, Jan Harm
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2011, 3 (04) : 326 - 333
  • [25] On topological extensions of Archimedean and non-Archimedean rings
    Andrei Yu. Khrennikov
    Jan Harm Van der Walt
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2011, 3 (4) : 326 - 333
  • [26] Non-Archimedean Nevanlinna theory in several variables and the non-Archimedean Nevanlinna inverse problem
    Cherry, W
    Ye, ZA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (12) : 5043 - 5071
  • [27] A Review of Finite Approximations, Archimedean and Non-Archimedean
    Digernes T.
    p-Adic Numbers, Ultrametric Analysis and Applications, 2018, 10 (4) : 253 - 266
  • [28] On the representation of non-Archimedean objects
    Deses, D
    TOPOLOGY AND ITS APPLICATIONS, 2005, 153 (5-6) : 774 - 785
  • [29] Definability in non-archimedean geometry
    Loeser, Francois
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, 2014, : 59 - 77
  • [30] Geometry and non-archimedean integrals
    Loeser, Francois
    EUROPEAN CONGRESS OF MATHEMATICS 2008, 2010, : 277 - 292