High-throughput optical screening of cellular mechanotransduction

被引:0
|
作者
Compton J.L. [1 ,2 ]
Luo J.C. [2 ,3 ]
Ma H. [1 ,2 ]
Botvinick E. [2 ,3 ,4 ]
Venugopalan V. [1 ,2 ,3 ]
机构
[1] Department of Chemical Engineering and Materials Science, University of California, Irvine
[2] Laser Microbeam and Medical Program, Beckman Laser Institute, University of California, Irvine
[3] Department of Biomedical Engineering, University of California, Irvine
[4] Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine
来源
Botvinick, E. (ebotvini@uci.edu) | 1600年 / Nature Publishing Group卷 / 08期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
47;
D O I
10.1038/nphoton.2014.165
中图分类号
学科分类号
摘要
We introduce an optical platform for rapid, high-throughput screening of exogenous molecules that affect cellular mechanotransduction. Our method initiates mechanotransduction in adherent cells using single laser-microbeam generated microcavitation bubbles without requiring flow chambers or microfluidics. These microcavitation bubbles expose adherent cells to a microtsunami, a transient microscale burst of hydrodynamic shear stress, which stimulates cells over areas approaching 1 mm2. We demonstrate microtsunami-initiated mechanosignalling in primary human endothelial cells. This observed signalling is consistent with G-protein-coupled receptor stimulation, resulting in Ca2+ release by the endoplasmic reticulum. Moreover, we demonstrate the dose-dependent modulation of microtsunami-induced Ca2+ signalling by introducing a known inhibitor to this pathway. The imaging of Ca2+ signalling and its modulation by exogenous molecules demonstrates the capacity to initiate and assess cellular mechanosignalling in real time. We utilize this capability to screen the effects of a set of small molecules on cellular mechanotransduction in 96-well plates using standard imaging cytometry. © 2014 Macmillan Publishers Limited. All rights reserved.
引用
收藏
页码:710 / 715
页数:5
相关论文
共 50 条
  • [31] High-throughput screening with transcriptomics
    Lei Tang
    Nature Methods, 2020, 17 : 251 - 251
  • [32] High-throughput screening with aptamers
    不详
    BIOTECHNIQUES, 2001, 30 (05) : 913 - 913
  • [33] High-throughput ADE screening
    Kretz, O
    Probst, A
    PHARMACOKINETIC OPTIMIZATION IN DRUG RESEARCH: BIOLOGICAL, PHYSICOCHEMICAL, AND COMPUTATIONAL STRATEGIES, 2001, : 199 - 215
  • [35] High-throughput screening challenges
    不详
    GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2008, 28 (14): : 26 - 27
  • [36] High-throughput screening for polymorphism
    Hilfiker, R
    Berghausen, J
    Blatter, F
    De Paul, SM
    Szelagiewicz, M
    Von Raumer, M
    CHIMICA OGGI-CHEMISTRY TODAY, 2003, 21 (09) : 75 - +
  • [37] Optogenetic high-throughput screening
    Brenker, Kathrin
    Jakob, Annik
    Koebele, Luis
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2021, 50 (SUPPL 1): : 139 - 139
  • [38] The future of high-throughput screening
    Mayr, Lorenz M.
    Fuerst, Peter
    JOURNAL OF BIOMOLECULAR SCREENING, 2008, 13 (06) : 443 - 448
  • [39] High-throughput hybridoma screening
    Sawyer A.
    Hall D.
    Genetic Engineering and Biotechnology News, 2011, 31 (05): : 28 - 32
  • [40] High-throughput virtual screening
    Shuzo Hirata
    Katsuyuki Shizu
    Nature Materials, 2016, 15 : 1056 - 1057